

統計検定2級

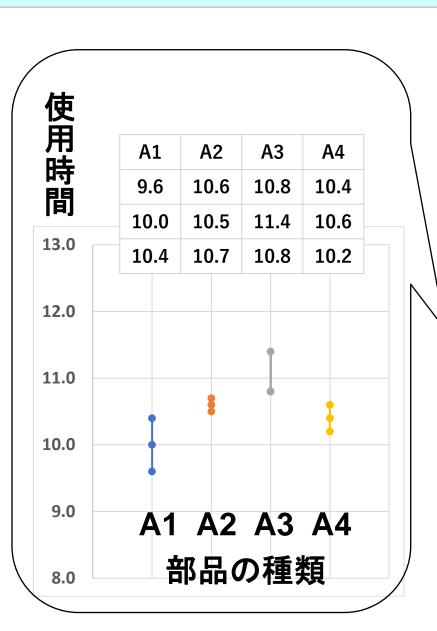
公式問題集(CBT対応版)の解説

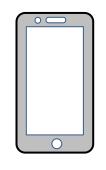
カテゴリー10. 線形モデルの分野

10-2: 分散分析の分野

(p160-173)

統計検定2級 CBT問題集 PART.2 目次

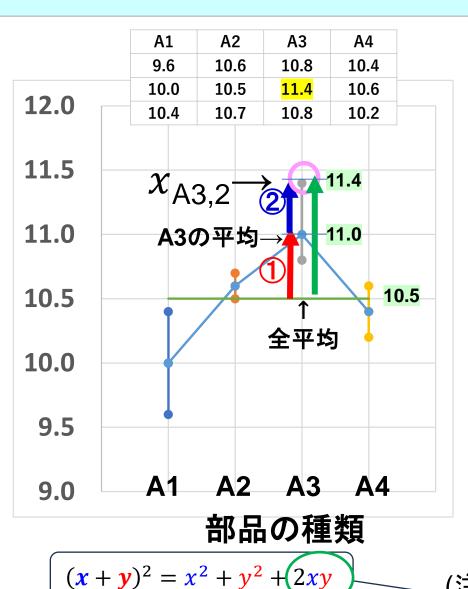

ページ	カテゴリー	分野
24	1	1変数記述統計の分野
42	2	2変数記述統計の分野
52	3	データ収集の分野
58	4	確率の分野
66	5	確率分布の分野
78	6	標本分布の分野
94	7	推定の分野
106	8	検定の分野
126	9	カイ二乗検定の分野
126	9-1	適合度検定の分野
134	9–2	独立性検定の分野
142	10	線形モデルの分野
142	10-1	回帰分析の分野
160	10-2	分散分析の分野


(p160.0)

[C10] [CATEGORY.10] 線形モデルの分野 分散分析の各問題の解説を 行う前に、「分散分析の基礎」を ご説明します。 分散分析の基礎をご存知の方は、 (p160.1a)~(p160.1f)を スキップし、 (p160.2)~を視聴ください

[C10-1] 回帰分析の分野 [C10-2] 分散分析の分野

(p160.1a) [C10-2]分散分析の基礎: 対象とする問題



例題:スマホの1充電当たりの使用時間を長くする 検討を行っています。ある部品に4種(*)を使い、 使用時間を調べました。

(*)部品A1: 旧部品、 部品A2,A3,A4:新部品の候補

それぞれ、3個のサンプルを作成し、使用時間を調べました。この部品の種類により、使用時間が異なると言えますか?

(p160.1b) [C10-2]分散分析の基礎: ばらつきの分解

ばらつきの総和(偏差平方和,変動)は、

$$S = (11.4 - 10.5)^2 + \cdots$$
 (残り11個分)
= $\{(11.4 - 11.0) + (11.0 - 10.5)\}^2 + \cdots$ (残り11個分)

②: ばらつき ①: 部品の効果

総平方和

$$S = S_T = S_E + S_A$$

$$S_E = (11.4 - 11.0)^2 + \cdots (残り11個分) 誤差平方和$$

$$S_A = (11.0 - 10.5)^2 + \cdots$$
 (残り11個分) $①$:部品の効果 A間平方和

(2):ばらつき

のように、総平方和を①と②に分けることができました。

(p160.1c) [C10-2]分散分析の基礎: 自由度

母平均の検定・推定 (母分散:未知)

不偏分散 =
$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{偏差平方和}{自由度}$$

今の例では、

データ総数:
$$4 \times 3 = 12$$
全自由度= データ総数 - 1
 $\phi_T = n - 1 = 12 - 1 = 11$

A1	A2	A3	A4
9.6	10.6	10.8	10.4
10.0	10.5	11.4	10.6
10.4	10.7	10.8	10.2

⇒<u>誤差の自由度= 全自由度 - 因子Aの自由度</u>

$$\phi_E = \phi_T - \phi_A$$
$$= 11 - 3 = 8$$

4水準

⇒因子Aの自由度= 水準数
$$-1$$

 $\phi_A = 4 - 1 = 3$

公式: 全自由度 (ϕ_T) = データ総数 -1

因子Aの自由度(ϕ_A) = 水準数 -1

誤差の自由度(ϕ_E)= $\phi_T - \phi_A$

のように、3つの自由度(ϕ_T , ϕ_A , ϕ_E)を求めます。

(p160.1d) [C10-2]分散分析の基礎: 自由度(練習)

A1	A2	А3	A4	A5
値:有り				

灰色部分には値が有り、白色部分には値が無いとします 3種の自由度を求めてください

全自由度: $\phi_T = 5 \times 4 - 1 = 19$

因子Aの自由度: $\phi_A = 5 - 1 = 4$ (A: 5水準だから)

誤差の自由度: $\phi_E = 19 - 4 = 15$

A1	A2	А3	A4	A 5
値:有り				
	値:無し		値:無し	

全自由度: $\phi_T = (5 \times 4 - 2) - 1 = 17$

因子Aの自由度: $\phi_A = 5 - 1 = 4$

誤差の自由度: $\phi_E = 17 - 4 = 13$

公式: 全自由度 $(\phi_T) = \overline{r} - 9$ 総数 -1

因子Aの自由度 (ϕ_A) = 水準数 - 1

誤差の自由度 (ϕ_E) = 全自由度 – 因子Aの自由度 = $\phi_T - \phi_A$

(p160.1e) [C10-2]分散分析の基礎: 検定の手順

(1): 2つの仮説を立てます

値の説明:(スマホの使用可能時間)要因A:(部品の種類)

帰無仮説 H₀: 要因Aの効果はない 対立仮説 H₁: 要因Aの効果はある

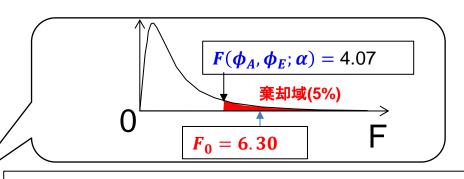
(2): 有意水準αを

定めます: α= 0.05

A1	A2	A3	A 4
9.6	10.6	10.8	10.4
10.0	10.5	11.4	10.6
10.4	10.7	10.8	10.2

(3): 棄却域を定めます

データ総数(n)=(12),要因Aの水準数=(4)


全自由度: $\phi_T = 12 - 1 = 11$

因子Aの自由度: $\phi_A = 4 - 1 = 3$

誤差の自由度: $\phi_E = 11 - 3 = 8$

棄却域: $F > F(\phi_A, \phi_E; \alpha) = F(3, 8; 0.05) = 4.07$

理論:帰無仮説が正しい時、検定統計量: $F_0 = \frac{V_A}{V_E}$ は自由度 $(oldsymbol{\phi_A}, oldsymbol{\phi_E})$ のF分布に従う

(5): H₀を棄却する・しないの判定

 $F_0 = (6.30)$ は棄却域に ある

ない)

どっちですか?

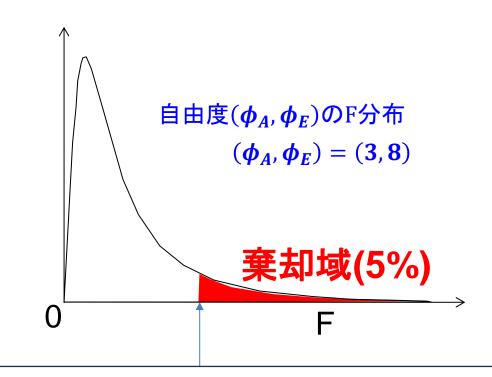
($igoplus F = F_0$ が棄却域にあるので、 H_0 を棄却する $\Rightarrow H_1$ は正しいと言える

 $)F = F_0$ が棄却域にないので、 H_0 は棄却できない

⇒ H₁は正しいかどうか何も言えない

(4)分散分析表を作成し、 検定統計量を求めます。

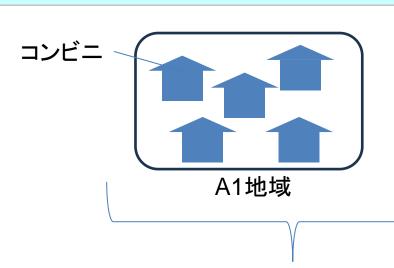
要因	(a)平方和 S	(b)自由度 φ	(c)平均平方(分散) V=S/φ	(d)F ₀ =V _A /V _E	(d),(e)の 大小比較	(e)棄却域の 下限
A(因子)	1.56	3	0.52	6.30	>	4.07
E(誤差)	0.66	8	0.0825	+A-C-4	 大三 目	
計	2 22	11		検定権	流計量 💳	

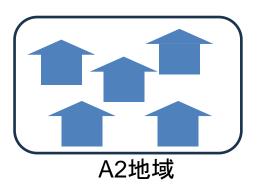

★超重要

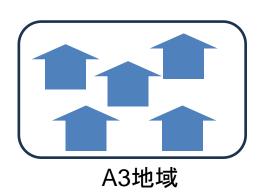
(p160.1f) [C10-2]分散分析の基礎: F分布表

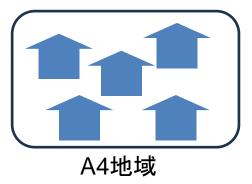
F分布:

P = 0.05


		φ 1							
		1	2	3	4	5	6	7	8
φ2=	1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88
	2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37
	3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85
	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04
	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82
	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15
	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73
	8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44
	9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23
	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07
	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95
	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85




$$F(\phi_A, \phi_E; \alpha) = F(3, 8; 5\%) = 4.07$$


(p160.2) [C10-2]問1. 一元配置分散分析の基本

[1]:ABランク [2]:ABランク [3]:ABランク

地域ごとの売上げに違いがあるか、 を1元配置分散分析で調べる

売上げ

地域	A1	A2	А3	A4
5店舗 <u>←</u> (繰り返し=5)				

Q: 以下の自由度はいくらでしょう?

全自由度: $\phi_T = 4 \times 5 - 1 = 19$

因子Aの自由度: $\phi_A = 4-1=3$ (ア)

誤差の自由度: $\phi_E = 19 - 3 = 16$ (イ)

公式: 全自由度 (ϕ_T) = データ総数 -1

因子Aの自由度(ϕ_A) = 水準数 -1

誤差の自由度 $(\phi_E) = \phi_T - \phi_A$

(p160.3) [C10-2]問1[1][2]. 一元配置分散分析の基本

[1]:ABランク [2]:ABランク [3]:ABランク

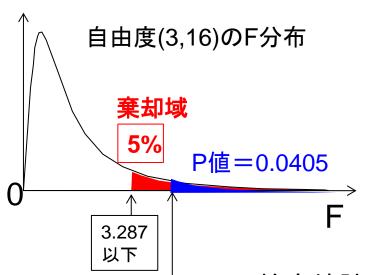
分散分析表 ⇒(ウ)、(エ)、(オ)を求めてください

要因	平方和S	自由度φ	平均平方Ⅴ	F ₀
A(因子)	0.2204	(ア) 3	(ウ) 0.0735	(才) 3.49
E(誤差)	0.3370	(イ) 16	(工) 0.0211	
計	0.5574	19	0.0293	

[2](答)は? ・・・

(公式)分散分析表@一元配置分散分析

要因	平方和S	自由度φ	平均平方V	F _o
A(因子)	S _A	Φ _A	$V_A = S_A / \Phi_A$	V _A /V _E
E(誤差)	S _E	ФЕ	$V_E = S_E / \Phi_E$	
計	S _T	Фт		


[1]不偏分散は?

不偏分散 =
$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{偏差平方和}{自由度}$$
 = $\frac{S_T}{\phi_T} = \frac{0.5574}{19} = 0.0293$

$$=\frac{S_T}{\phi_T}=\frac{0.5574}{19}=0.0293$$

(p160.4) [C10-2]問1[3]. 一元配置分散分析の基本

[1]:ABランク [2]:ABランク [3]:ABランク

帰無仮説 H₀: 売上は地域に依存しない (μ₁=μ₂= μ₃=・・・)

対立仮説 H₁: 売上は地域に依存する

Q: どちら?

(µ₁,µ₂,...の少なくとも1つが異なる)⇒①②

(µ₁,µ₂,...の全でが異なる)⇒3(4)

 $F_0 = 3.49$

検定統計量: F₀=3.49

有意水準:5%([3]の問題文に記載)

Q: 帰無仮説H₀は棄却されますか? (問題をよく見てください)

⇒棄却される [3]の候補:①,③

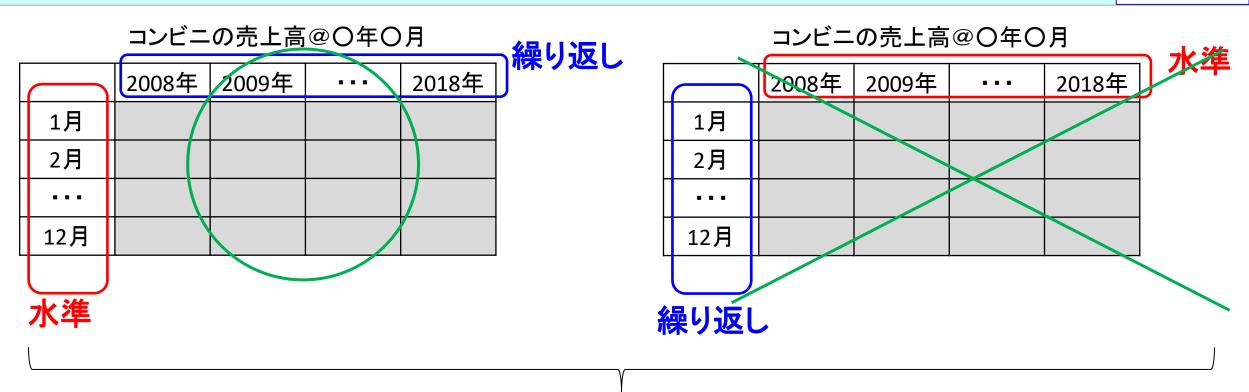
(解法1)p160の分散分析表の右端のP値=0.0405 < 0.05 (有意水準)

(解法2)自由度(3,16)の上側5%点・・・p203の表にはない

(3,15):3.287, (3,20):3.098 ⇒ この間にあるはず <

F₀=3.49は、棄却域に入っている

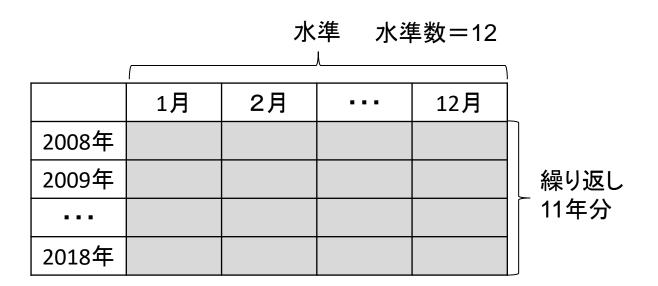
P=					
		φ 1			
		1	2	3	4
φ2=	5	6.608	5.786	5.409	5.192
	10	4.965	4.103	3.708	3.478
	15	4.543	3.682	3.287	3.056
	20	4.351	3.493	3.098	2.866
1	25	4.242	3.385	2.991	2.759
/	30	4.171	3.316	2.922	2.690


⇒売上げは地域により 違いがあると言える

[3](答)①

(p163.1) [C10-2]問2. 平方和・自由度・結果の説明

[1]:BCランク [2]:ABランク [3]:Bランク


どちら?

「月ごとの売上高に差があるか?」を考えます

(p163.2) [C10-2]問2[2]. 平方和・自由度・結果の説明

[1]:BCランク [2]:ABランク [3]:Bランク

小問[1]は後回しにし、小問[2]自由度 を先にやりましょう

公式: 全自由度 (ϕ_T) = データ総数 -1 因子Aの自由度 (ϕ_A) = 水準数 -1

誤差の自由度(ϕ_E)= $\phi_T - \phi_A$

Q. 各自由度を求めてください

全自由度: ϕ_T	$12 \times 11 - 1 = 132 - 1 = 131$
因子A(月)の自由度: ϕ_A	$(\mathcal{P})12-1=11$
誤差の自由度: ϕ_E	(イ) 131 - 11 = 120

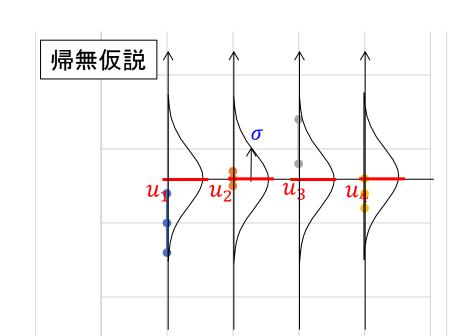
[2](答)③

(p163.3) [C10-2]問2[3]. 平方和・自由度・結果の説明

[1]:BCランク [2]:ABランク [3]:Bランク

p165 小問[3]を考えます

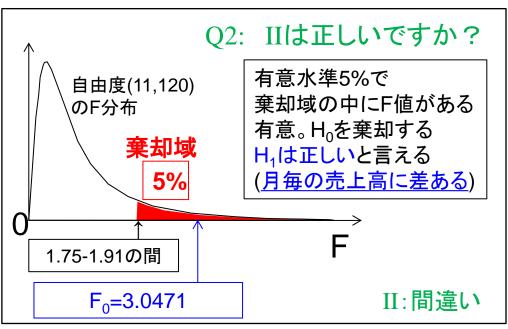
Q1: (問題分)Iの前半部分 は正しいですか?

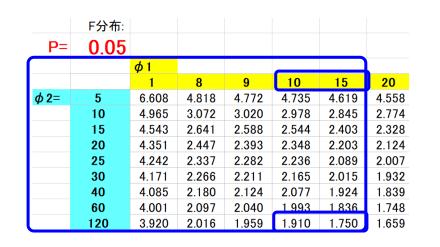

帰無仮説 H₀: u₁, u₂, u₃,...はすべて等しい (月毎の売上高に差がない)


対立仮説 H₁: u₁, u₂, u₃,...はすべてが異なる(月毎の売上高がすべて異なる)

⇒Iは間違い

対立仮説 H₁: u₁, u₂, u₃,…は少なくとも1つが異なる (月毎の売上高が異なる月がある) │ならば、正しい


II、IIIの前半部分は、このようになっています



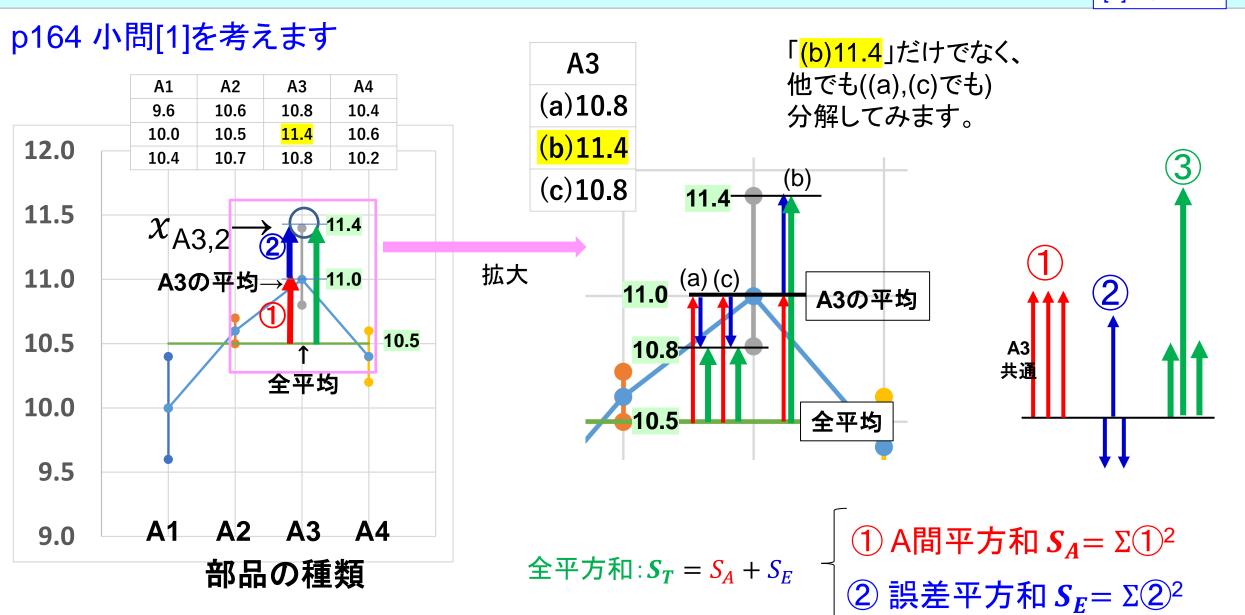
(p163.4) [C10-2]問2[3]. 平方和・自由度・結果の説明

[1]:BCランク [2]:ABランク [3]:Bランク

\land	Q3	: <u>III</u>	は正しいですか?		
	自由度(11,120) のF分布 棄却域	棄	有意水準2.5%で 棄却域の中にF値がある 有意。H ₀ を棄却する H ₁ は正しいと言える		
	2.5%	P値	III: 正しい		
0	1.945~2.157の間	\	F		
	F ₀ =3.0471		P値は2.5%より小さい		

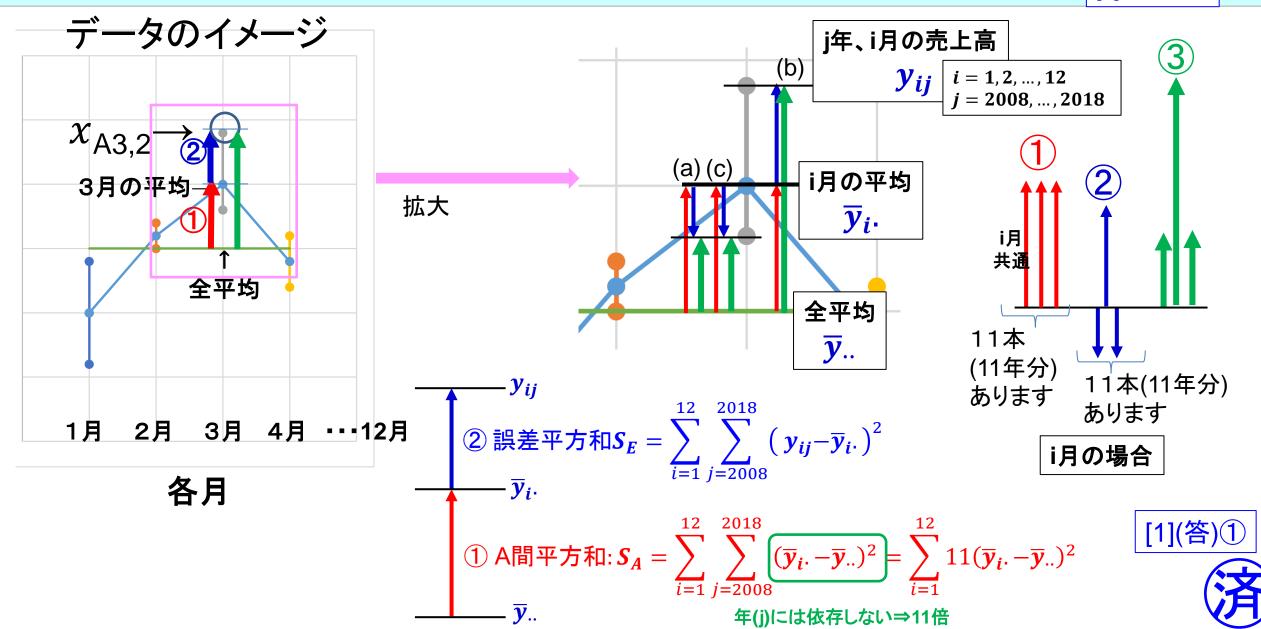
	F分布:						
P=	0.025						
		ø 1					
		1	8	9	10	15	20
φ 2 =	5	10.007	6.757	6.681	6.619	6.428	6.329
	10	6.937	3.855	3.779	3.717	3.522	3.419
	15	6.200	3.199	3.123	3.060	2.862	2.756
	20	5.871	2.913	2.837	2.774	2.573	2.464
	25	5.686	2.753	2.677	2.613	2.411	2.300
	30	5.568	2.651	2.575	2.511	2.307	2.195
	40	5.424	2.529	2.452	2.388	2.182	2.068
	60	5.286	2.412	2.334	2 270	2 061	1.944
	120	5.152	2.299	2.222	2.157	1.945	1.825

I: 間違い


II: 間違い

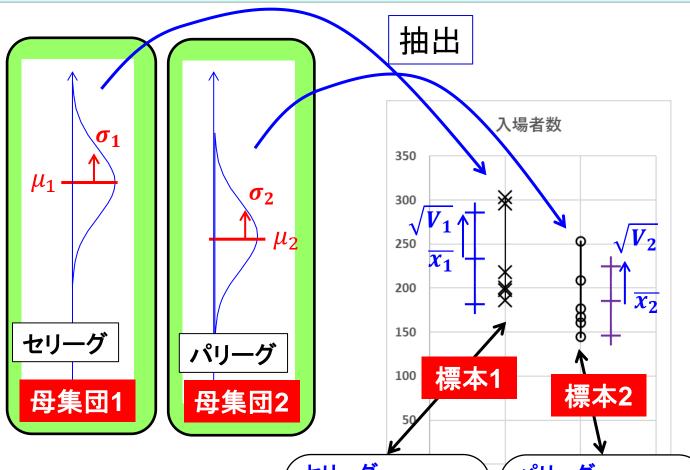
III: 正しい

[3](答)IIIのみ正しい ⇒[3](答) ③


(p163.5)[C10-2]問2[1]. 平方和・自由度・結果の説明

[1]:BCランク [2]:ABランク [3]:Bランク

(p163.6)[C10-2]問2[1]. 平方和・自由度・結果の説明


[1]:BCランク [2]:ABランク [3]:Bランク

(p168.1)[C10-2]問3[1].母平均の差の検定と一元配置分散分析

[1]Bランク [2]BCランク

分散: $\sigma_1^2 = \sigma_2^2$ とします。

セリーグ

 $x_{11}, x_{12}, \dots, x_{1n_1}$ 標本平均: $\overline{x_1}$ 不偏分散: V1 サンプルサイズ n_1 平方和: $S_1 = (n_1 - 1)V_1$

パリーグ

 $x_{21}, x_{22}, \dots, x_{2n_2}$ 標本平均: $\overline{x_2}$ 不偏分散: V₂ サンプルサイズ n_2 平方和: $S_2 = (n_2 - 1)V_2$

tは、自由度 ϕ のt分布に従う。

検定統計量:

$$t = \frac{(\overline{x_1} - \overline{x_2}) - (\mu_1 - \mu_2)}{\sqrt{V\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim t(\phi)$$

2つの不偏分散

$$V_1, V_2 \Rightarrow$$

合併した分散:

$$V = \frac{V_1 \boldsymbol{\phi}_1 + V_2 \boldsymbol{\phi}_2}{\boldsymbol{\phi}_1 + \boldsymbol{\phi}_2}$$

|自由度:

$$\phi_1 = n_1 - 1,$$

$$\phi_2 = n_2 - 1$$

$$\Rightarrow \phi = \phi_1 + \phi_2$$

$$= n_1 + n_2 - 2$$

(p168.2)[C10-2]問3[1].母平均の差の検定と一元配置分散分析

[1]Bランク [2]BCランク

セリーグ:

標本平均: $\overline{x_1} = 233.7$

サンプルサイズ $n_1 = 6$

自由度: $\phi_1 = 6 - 1 = 5$

偏差平方和: $S_1 = 13549$

不偏分散: $V_1 = \frac{S_1}{\phi_1} = 13549/5$

パリーグ:

標本平均: $\overline{x_2} = 185.3$

サンプルサイズ $n_2 = 6$

自由度: $\phi_2 = 6 - 1 = 5$

偏差平方和: $S_2 = 7763$

不偏分散: $V_2 = \frac{S_2}{\phi_2} = 7763/5$

帰無仮説 H_0 : $\mu_1 - \mu_2 = 0$

対立仮説 $H_1: \mu_1 - \mu_2 \neq 0$

帰無仮説が正しい時

 $(\mu_1 - \mu_2 = 0)$ の検定統計量

$$t = \frac{(\overline{x_1} - \overline{x_2}) - (\mu_1 - \mu_2)}{\sqrt{V(\frac{1}{n_1} + \frac{1}{n_2})}}$$

(p116)[C8]問6. 母平均の差の検定

合併した分散:

$$V = \frac{V_1\phi_1 + V_2\phi_2}{\phi_1 + \phi_2} = \frac{S_1 + S_2}{\phi_1 + \phi_2}$$

$$=\frac{13549+7763}{5+5}=2131.2$$

$$= \frac{233.7 - 185.3 - 0}{\sqrt{2131.2 \times \left(\frac{1}{6} + \frac{1}{6}\right)}} = \frac{48.4}{26.65} = 1.816$$

(p168.3)[C10-2]問3[2].母平均の差の検定と一元配置分散分析 [1]Bランク

p169 小問[2]を考えます

方法1: [1]の結果: t = 1.816

p169, 下から3行目

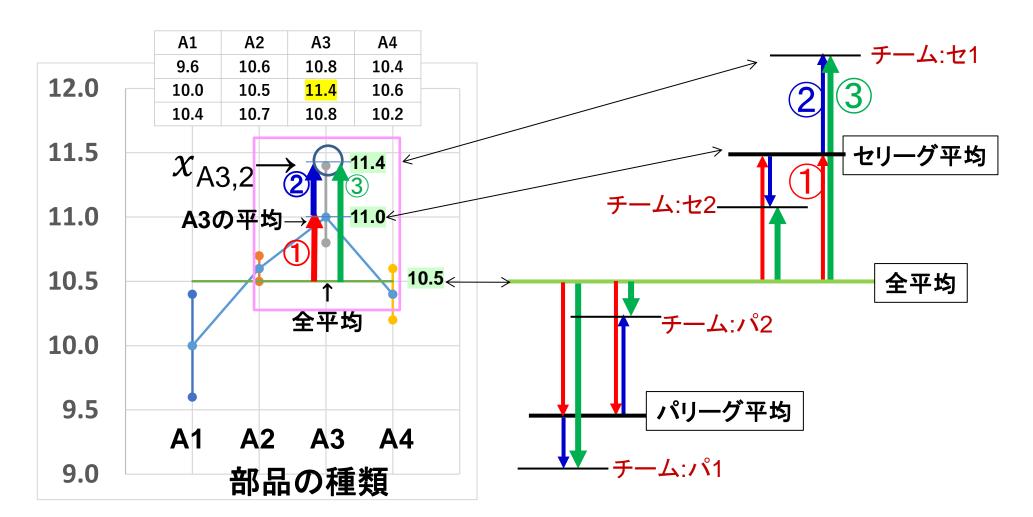
⇒F $\dot{\mathbf{u}} = t^2 = 1.816^2 = 3.298$

⇒(答)④

8,9割を目指す方向けです 合格を目指す方は、 憶える必要はないです

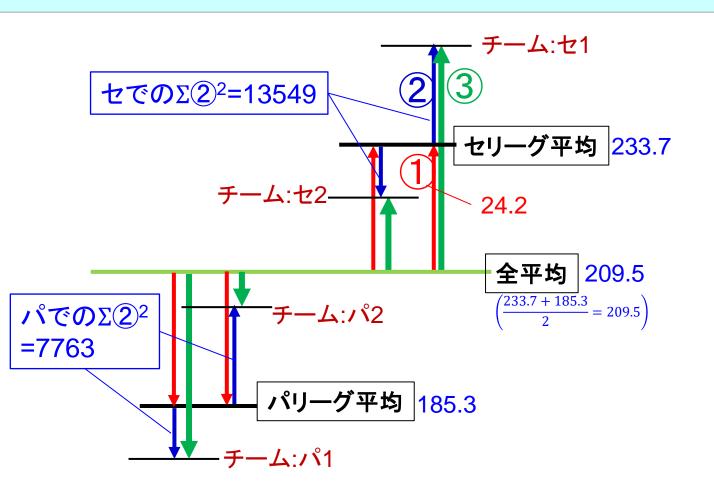
公式:

- ●水準数が2の一元配置分散分析でのF値
- ●母平均の差の検定のt<mark>値</mark> (2群の母分散が等しい場合)


$$\Rightarrow F = t^2$$

水準1	水準2

(p168.4)[C10-2]問3[2].母平均の差の検定と一元配置分散分析 [1]Bランク [2]BCランク


p169 小問[2]を考えます

方法2: 分散分析表を作って、F値を求めましょう。

(p168.5)[C10-2]問3[2].母平均の差の検定と一元配置分散分析 [1]Bランク

[2]BCランク

Q1:p168の表の、セリーグとパリーグの「平均」「偏差平方和」は、 この図で、どこに対応するでしょうか?

Q3:10はいくらでしょうか? Q2:全平均はいくらでしょうか?

分散分析を行う⇔分散分析表を作成

(a) A間平方和 $S_A = \Sigma 1^2$

(b) 誤差平方和 $S_E = \Sigma 2^2$ を求めます

Q4: (a),(b)はいくらでしょうか?

(a) A間平方和 $S_A = \Sigma 1^2$ $= 24.2^2 \times 12 = 7027.68$

(b) 誤差平方和 $S_E = \Sigma 2^2$ = 13549 + 7763 = 21312

(p168.6)[C10-2]問3[2].母平均の差の検定と一元配置分散分析 [1]Bランク [2]BCランク

_	セリーグ	パリーグ
6球団 ┤		

全自由度: ϕ_T	12-1=11
因子Aの自由度: ϕ_A	2-1=1
誤差の自由度: ϕ_E	11-1=10

←自由度を求めてください。

公式: 全自由度 (ϕ_T) = データ総数 -1

因子Aの自由度(ϕ_A) = 水準数 -1

誤差の自由度 $(\phi_E) = \phi_T - \phi_A$

(p168.7)[C10-2]問3[2].母平均の差の検定と一元配置分散分析

[1]Bランク [2]BCランク

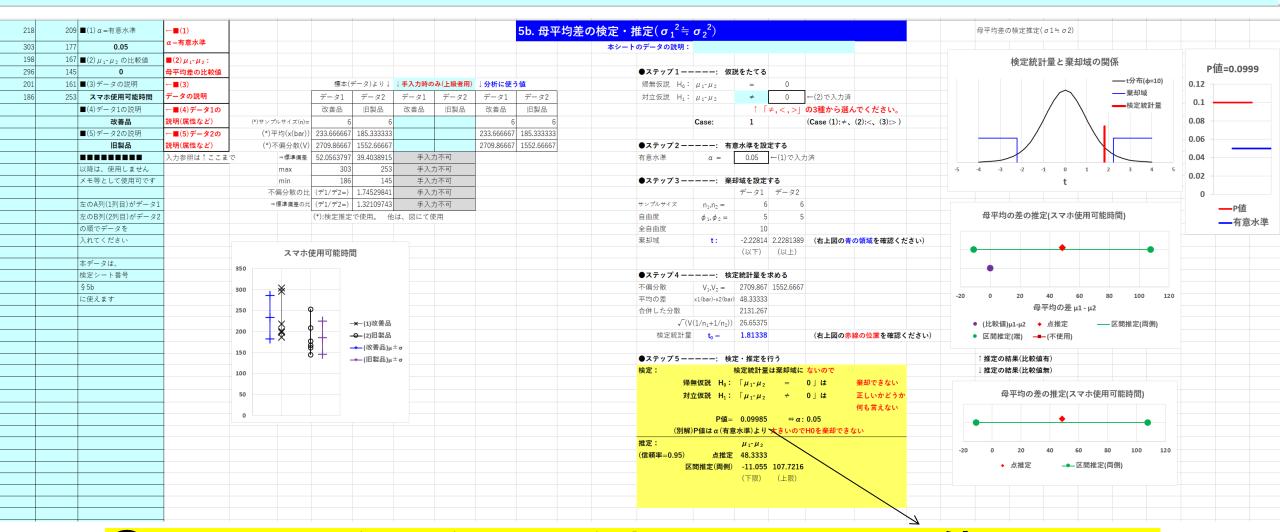

分散分析表を完成し、F値を求めてください

要因	平方和S	自由度φ	平均平方V	F ₀
A(因子)	7027.7	1	7027.7	[2] 3.30
E(誤差)	21312	10	2131.2	
計		11		

(公式)分散分析表@一元配置分散分析

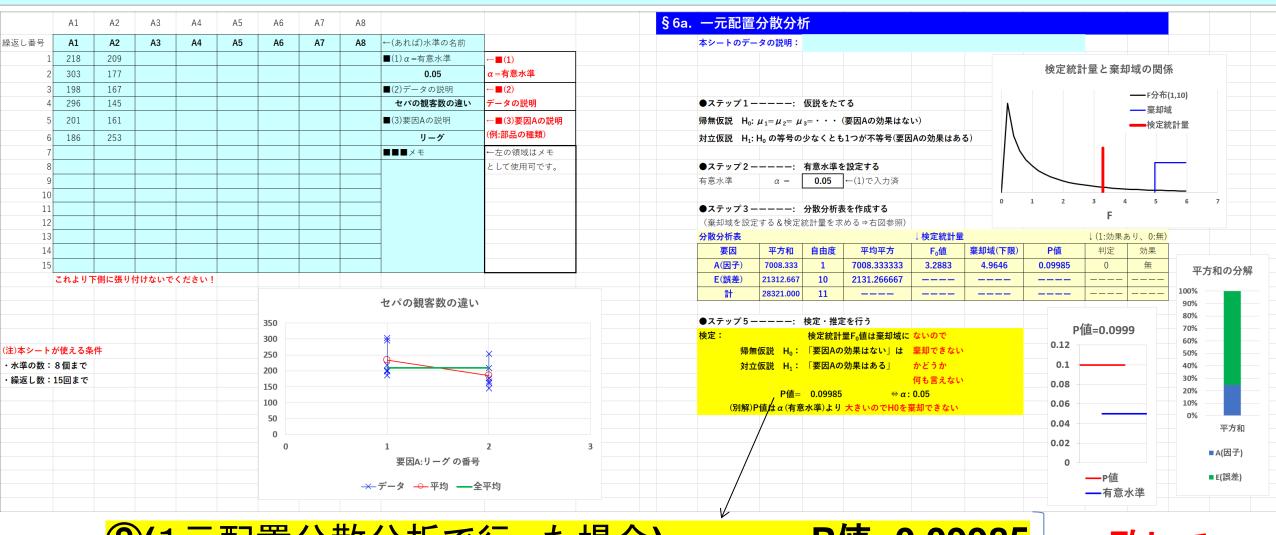
要因	平方和S	自由度φ	平均平方Ⅴ	F ₀
A(因子)	S _A	Φ _A =	$V_A = S_A / \phi_A$	V _A /V _E
E(誤差)	S _E =	Φ _E	$V_E = S_E / \Phi_E$	
計	S _T	Фт		

(p168.8a)[C10-2](補足)問3.母平均の差の検定と一元配置分散分析



•別の検定 ・結果も違う? ⇒棄却される

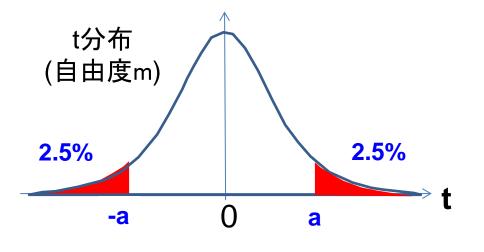
結果を比べると どうなるでしょう?

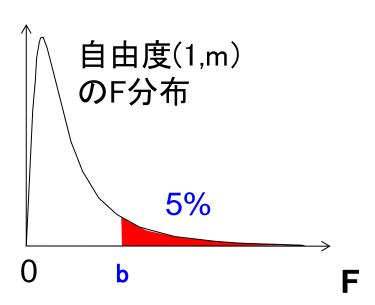

安心してください。 P値=0.09985は全く同じです。 ⇒「帰無仮説が棄却される/されない」の結果は2つの手法で同じになります。

(p168.8b)[C10-2](補足)問3.母平均の差の検定と一元配置分散分析

①(母平均の差@2集団の検定で行った場合)P値=0.09985

(p168.8c)[C10-2](補足)問3.母平均の差の検定と一元配置分散分析


②(1元配置分散分析で行った場合)


P値=0.09985

①(母平均の差@2集団の検定で行った場合)P値=0.09985

一致して います

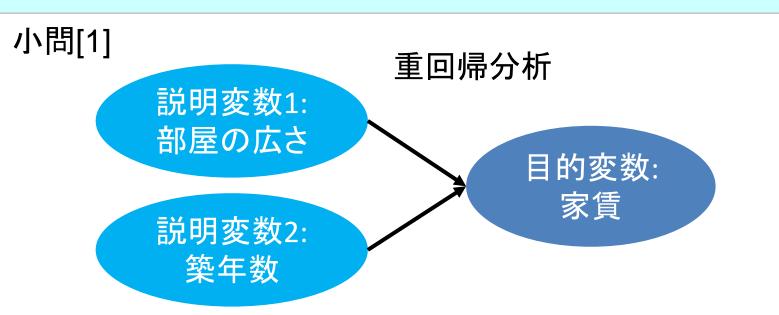
(p168.8d)[C10-2](補足)問3.母平均の差の検定と一元配置分散分析

下の空欄を埋めてください (CBT問題集のp201,p203の表をお使いください)

自由度m	a	a ²	b
5	2.571	6.610 =	6.608
10	2.228	4.964 =	4.965
15	2.131	4.541 =	4.543
20	2.086	4.351 =	4.351

CBT問題集p169 の下から3行目:

自由度(1,m)のF値=(自由度mのt値)²


を確認していただきました。

より詳しくは、p92問8の内容を使って一般化できます。

|t|≥aとなる確率 = F≥bとなる確率 = 5%

(p171.1)[C10-2]問4[1].重回帰モデルに対する分散分析

[1]Bランク [2]Bランク

(注)

- 「回帰」「分散分析」の知識が必要
- ・回帰の学習がまだの方は、 回帰の学習後に取り組んでください

Q: この問題で、「回帰」の自由度はいくらでしょう?

(答)(ア)2

要因	(a)平方和S	(b)自由度ф	(c)平均平方∨	F ₀
R(回帰)	103803	((ア))2	(ウ)	(才)
e(残差)	18146	185	(工)	
計	121949	(イ)		

公式:

回帰分析において、 説明変数がp個の時、 回帰の自由度=p

(p171.2)[C10-2]問4[1].重回帰モデルに対する分散分析

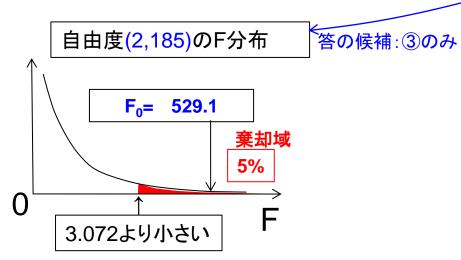
[1] 分散分析表を完成し、(オ)F値を求めてください

要因	(a)平方和S	(b)自由度φ	(c)平均平方∨	F値
R(回帰)	103803	(ア) 2	(ウ) 51901.5	(才)529.1
e(残差)	18146	185	(エ) 98.086	
計	121949	(イ)187		

(ア)2 (オ)529.1 ⇒(答)[1]③

要因	平方和S	自由度φ	平均平方V	F ₀
R(回帰)	S _R	φ _R =	$V_R = S_R / \Phi_R$	V_R/V_e
e(残差)	S _e	φ _e	V _E =S _E /φ _e	
計	S _T	фт		

(p171.3)[C10-2]問4[2].重回帰モデルに対する分散分析


[1]Bランク [2]Bランク

[2]

帰無仮説 H₀: 回帰は有意でない

対立仮説 H₁: 回帰は有意である

要因	(a)平方和S	(b)自由度φ		ф	(c)平均平方V	F値
R(回帰)	103803		2		(ウ) 51901.5	529.1
e(残差)	18146		185		(エ) 98.086	
計	121949		187			

F分布: **0.05**

		ϕ 1						
		1	2	3	4	5	6	7
φ2=	5	6.608	5.786	5.409	5.192	5.050	4.950	4.876
	10	4.965	4.103	3.708	3.478	3.326	3.217	3.135
	15	4.543	3.682	3.287	3.056	2.901	2.790	2.707
	20	4.351	3.493	3.098	2.866	2.711	2.599	2.514
	25	4.242	3.385	2.991	2.759	2.603	2.490	2.405
	30	4.171	3.316	2.922	2.690	2.534	2.421	2.334
	40	4.085	3.232	2.839	2.606	2.449	2.336	2.249
	60	4.001	3.150	2.758	2.525	2.368	2.254	2.167
	120	3.920	3.072	2.680	2.447	2.290	2.175	2.087

検定推定量:F₀=529.1は棄却域にある

H₀:は棄却できる

H₁:は正しいと言える

p171の「出力結果」:

「大きさ」のP値: 2×10⁻¹⁶ より小さい 「築年数」のP値: 2×10⁻¹⁶ より小さい 有意水準5% より小さいつ回帰は有意

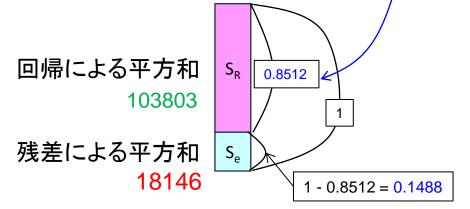
有意水準5%より小さい⇒回帰は有意

(H₀:は棄却できる、H₁:は正しいと言える)

- ·自由度(2,185)のF分布
- •H₀:は棄却できる

(答)[2]③

(p171.4)[C10-2](補足)問4[1].重回帰モデルに対する分散分析


Rの結果に基づき、分散分析表を作成する方法 (p171の「出力結果」の下に記載の内容)

要因	(a)平方和 S	(b)自由度φ	(c)平均平方 V=S/φ	F_0 = V_R/V_e
R(回帰)	(5)103803	2	(6) 51901.5	(7) 529.1
e(残差)	(3)18146	185	(2) 98.09	
計		187		

(4)決定係数(寄与率、重相関係数²) =0.8512 (Multiple R-squared: 0.8512) p171の出力結果の枠内の下から1行目

(1) 残差の標準誤差=9.904 (Residual standard error : 9.904 on 185 degrees of freedom) p171の出力結果の枠内の下から2行目

- (2) 残差の平均平方(≒分散) =9.904²=98.09
- (3) 残差の平方和: S_e =98.09×185← =18146

(5) 回帰の平方和: S_R S_R :S_e =0.8512: 0.1488 ⇒ S_R =S_e × (0.8512/0.1488) =18146 × (0.8512/0.1488)=103803