

統計検定2級

公式問題集(CBT対応版)の解説 カテゴリー10. 線形モデルの分野

> 10-1: 回帰分析の分野 (p142-159)

統計検定2級 CBT問題集 PART.2 目次

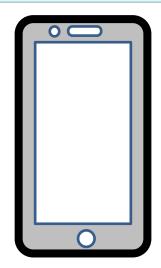
ページ	カテゴリー	分野
24	1	1変数記述統計の分野
42	2	2変数記述統計の分野
52	3	データ収集の分野
58	4	確率の分野
66	5	確率分布の分野
78	6	標本分布の分野
94	7	推定の分野
106	8	検定の分野
126	9	カイ二乗検定の分野
126	9-1	適合度検定の分野
134	9–2	独立性検定の分野
142	10	線形モデルの分野
142	10-1	回帰分析の分野
160	10-2	分散分析の分野

(p142.0)

[C10] [CATEGORY.10] 線形モデルの分野

[C10-1] 回帰分析の分野

[C10-2] 分散分析の分野

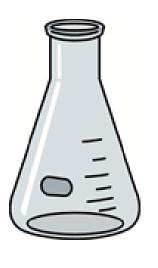

[C10-2] 分散分析の分野

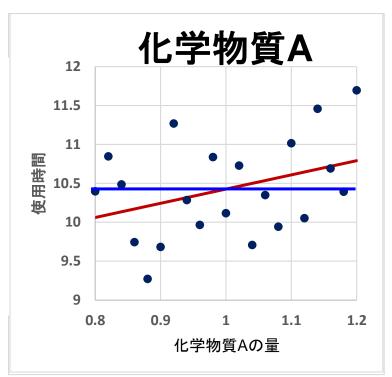
[C10-1] 回帰分析の分野の順での学習をおすすめします「回帰分析」で「分散分析」を使いますので

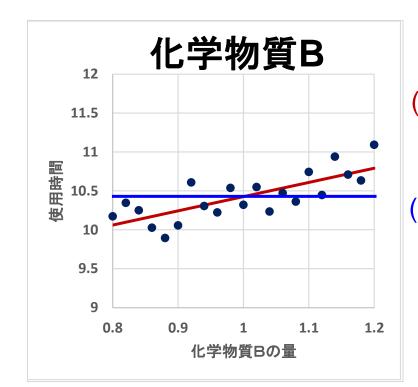
回帰分析の各問題の解説を 行う前に、「回帰分析の基礎」を ご説明します。

回帰分析の基礎をご存知の方は、 (p142.1a)~(p142.1L)を スキップし、 (p142.2)~を視聴ください

(p142.1a)[C10-1]回帰分析の基礎: 対象とする問題

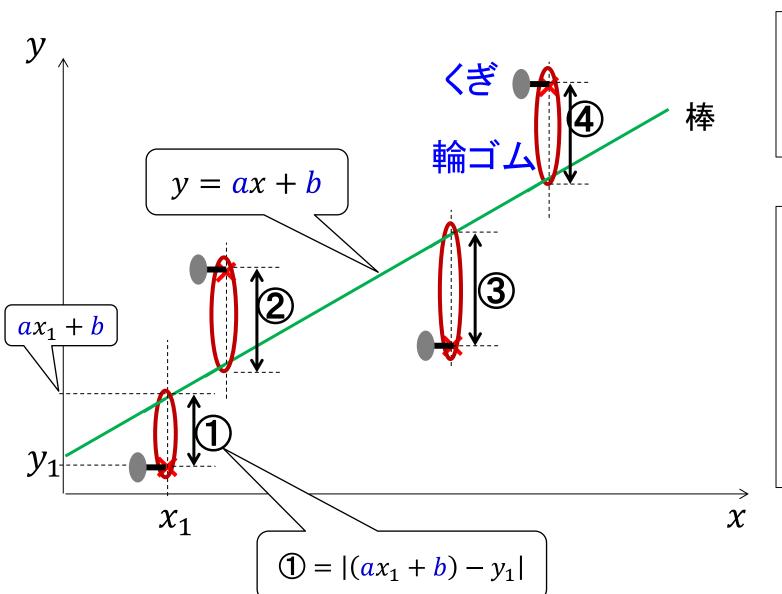



(問題)スマホの1充電当たりの使用時間を長くする検討を実施中と仮定。
・スマホのある素子作製工程で使う化学物質A、または化学物質Bの量を大きくすると、使用時間が長くなりそうな傾向がみられました。


(1)「化学物質の量(x)」と「使用時間(y)」の関係(式)は? 直線を想定すると?

(2)化学物質の量を変えると、使用時間が変わると言えるか?

を考えます



(1)直線を引く場合 <u>直線</u>をどう決める? (回帰直線)

(2)傾き=0ですか? 傾き≠0ですか?

(p142.1b)[C10-1]回帰分析の基礎: 回帰直線の求め方

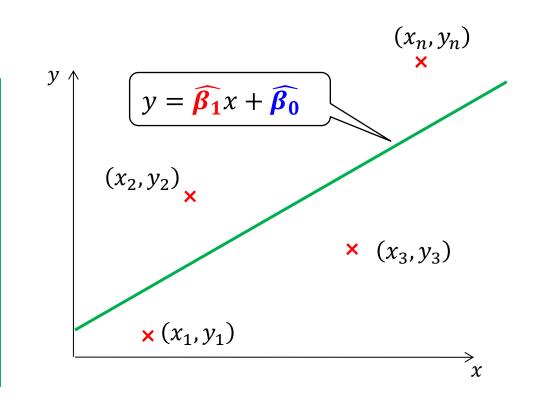
(大雑把な説明) 左図で、釣り合う「棒」の 位置を探す

(より正確な説明) $1^{2}+2^{2}+3^{2}+4^{2}$ を
最小にするように、
直線(y = ax + b)を決める
⇒係数a,bを決める
「最小二乗法」と呼ばれます

(p142.1c)[C10-1]回帰分析の基礎: 回帰直線の式

 $\widehat{\beta_1}$, $\widehat{\beta_0}$ は、それぞれ β_1 , β_0 の「推定値」

公式(回帰直線、回帰係数):


n個の点: $(x_1,y_1),(x_2,y_2),...,(x_n,y_n)$ に対する回帰直線: $y=\widehat{m{\beta}_1}x+\widehat{m{\beta}_0}$

回帰係数:
$$\widehat{\beta_1} = \frac{S_{xy}}{S_{xx}}$$
, $\widehat{\beta_0} = \overline{y} - \widehat{\beta_1}\overline{x}$

x,yの平均: $\bar{x} = \frac{1}{n}(x_1 + x_2 + \dots + x_n)$, $\bar{y} = \frac{1}{n}(y_1 + y_2 + \dots + y_n)$

偏差積和: $S_{xy} = (x_1 - \overline{x})(y_1 - \overline{y}) + (x_2 - \overline{x})(y_2 - \overline{y}) + \dots + (x_n - \overline{x})(y_n - \overline{y})$

偏差平方和: $S_{xx} = (x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2$

(p142.1d)[C10-1]回帰分析の基礎: 回帰直線の特徴,憶え方

$$y = \widehat{\beta_1}x + \widehat{\beta_0}, \quad \widehat{\beta_1} = \frac{s_{xy}}{s_{xx}}, \ \widehat{\beta_0} = \overline{y} - \widehat{\beta_1}\overline{x}$$

特徴①: 回帰直線は点(x̄, ȳ)を通る

役立つ問題例: ・回帰直線を選ぶ (例:p143問1[2])

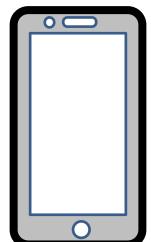
$$\widehat{\beta_0} = \overline{y} - \widehat{\beta_1} \overline{x}$$

$$\overline{y} = \widehat{\beta_1} \overline{x} + \widehat{\beta_0}$$

点 (\bar{x},\bar{y}) は回帰直線 $y = \widehat{\beta_1}x + \widehat{\beta_0}$ 上にある

 $y \wedge (x_2, y_2)$ $x \times (x_1, y_1)$ $y \wedge (x_2, y_2)$ $x \times (x_1, y_1)$ $x \times (x_1, y_1)$

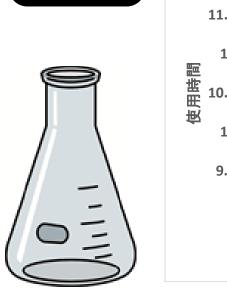
特徴②: $\widehat{\beta_1}$ は、「傾き」に対応

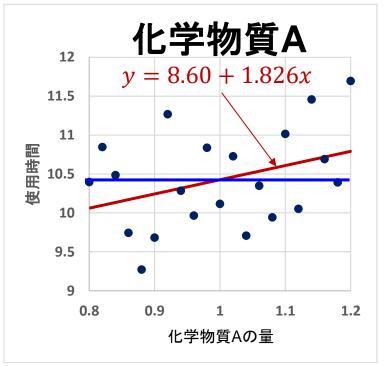

$$\widehat{\beta_{1}} = \frac{S_{xy}}{S_{xx}}$$

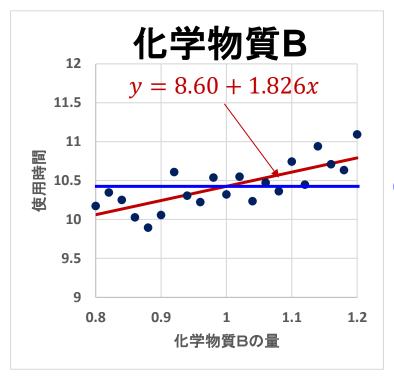
$$\widehat{\beta_{1}} \sim \frac{\Delta y}{\Delta x} \sim \frac{(y - \overline{y})}{(x - \overline{x})} \sim \frac{(x - \overline{x})(y - \overline{y})}{(x - \overline{x})(x - \overline{x})} \sim \frac{\Sigma(x - \overline{x})(y - \overline{y})}{\Sigma(x - \overline{x})(x - \overline{x})} \sim \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})(x_{i} - \overline{x})} = \frac{S_{xy}}{S_{xx}}$$

偏差積和: $S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$

偏差平方和: $S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})$


(p142.1e)[C10-1]回帰分析の基礎: 対象とする問題



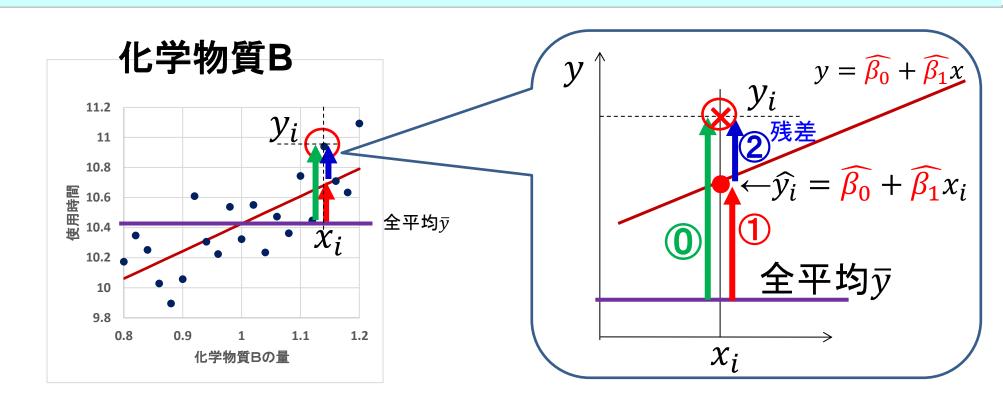

(1)「化学物質の量(x)」と「使用時間(y)」の関係(式)は? 直線を想定すると?

(2)化学物質の量を変えると、使用時間が変わると言えるか?

を考えます

(1)直線を引く場合 直線をどう決める?

⇒同じ回帰直線を得た


(2)傾き≠0と言える?

回帰の評価

(p142.1f)[C10-1]回帰分析の基礎: 回帰の評価、平方和の分解

分散分析の場合と 同様にばらつきを ①回帰、②残差 の2つに分けます

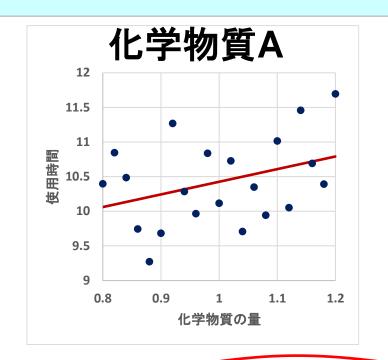
(注)回帰では、 「誤差」の代わりに 「残差」を使います (参考)入門統計解析法 p188 [注8.5]

①総平方和:

- ①回帰(Regression)による平方和:
- ②残差平方和:

分散分析の場合と同様に

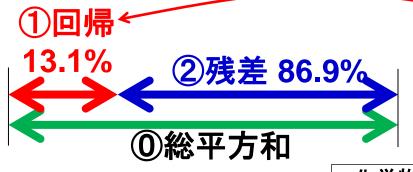
$$S_T = \sum_{i=1}^n (y_i - \bar{y})^2 = \sum_{i=1}^n ((y_i - \hat{y}_i) + (\hat{y}_i - \bar{y}))^2$$


$$S_R = \sum_{i=1}^n (\widehat{y}_i - \overline{y})^2$$

$$S_e = \sum_{i=1}^n (y_i - \widehat{y}_i)^2$$


↓(参考)入門統計解析法 p186 (8.17)式

$$S_T = S_R + S_e$$
 が成立します!


(p142.1g)[C10-1]回帰分析の基礎: 決定係数(寄与率)

化学物質	Α	В
回帰: <i>S_R</i>	1.027	1.027
残差: <i>S_e</i>	6.789	0.754
計: S _T	7.816	1.781
決定係数	0.131	0.577

①同帰 57.7% ②残差 42.3%

総平方和 S_T のうち、回帰の寄与 S_R の割合が決定係数(寄与率)です。

亰 <mark>S_Rの割合が</mark>		
寄与率)です。		
	⑥総平方和	
В		

化学物質	Α	В
相関係数	0.362	0.759
相関係数 ²	0.131	0.577
決定係数	0.131	0.577

決定係数 = $\frac{S_R}{S_T}$ = r^2 (r: 相関係数)

(p142.1h)[C10-1]回帰分析の基礎: 分散分析のステップ

(1): 2つの仮説:

帰無仮説 H_0 : $\beta_1 = 0$ 対立仮説 H_1 : $\beta_1 \neq 0$

$$y = \beta_0 + \beta_1 x$$

(2): 有意水準αを定めます $\alpha = 0.05 = 5\%$

(3):自由度を求め、棄却域を定めます

データ総数n=(21),

全自由度 $\phi_T = n - 1 = (20)$

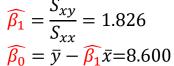
回帰の自由度: (単回帰では) $\Rightarrow \phi_R = 1$

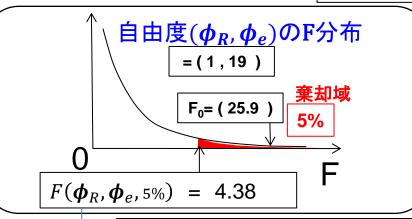
残差の自由度: $\boldsymbol{\phi}_e = \boldsymbol{\phi}_T - \boldsymbol{\phi}_R = (19)$

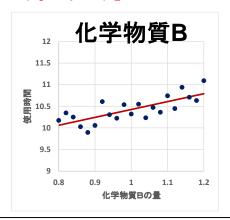
棄却域: $F > F(\boldsymbol{\phi}_R, \boldsymbol{\phi}_e, 5\%)$

$$F(1,(19),5\%) = (4.38)$$

回帰式:


$$y = \beta_0 + \beta_1 x$$


理論:帰無仮説が正しい時、検定統計量: $F_0 = \frac{V_R}{V}$ は自由度 (ϕ_R, ϕ_e) のF分布に従う


$$\bar{x} = (1.0000)$$
 $S_{xx} = (0.3080)$ $\widehat{\beta_1} = \frac{S_{xy}}{S_{xx}}$ $\bar{y} = (10.4261)$ $S_{xy} = (0.5624)$ $\widehat{\beta_0} = \bar{y} - \widehat{\beta_1}$

$$\widehat{\beta_1} = \frac{S_{xy}}{S_{xx}} \\
\widehat{\beta_0} = \overline{y} - \widehat{\beta_1} \overline{x}$$

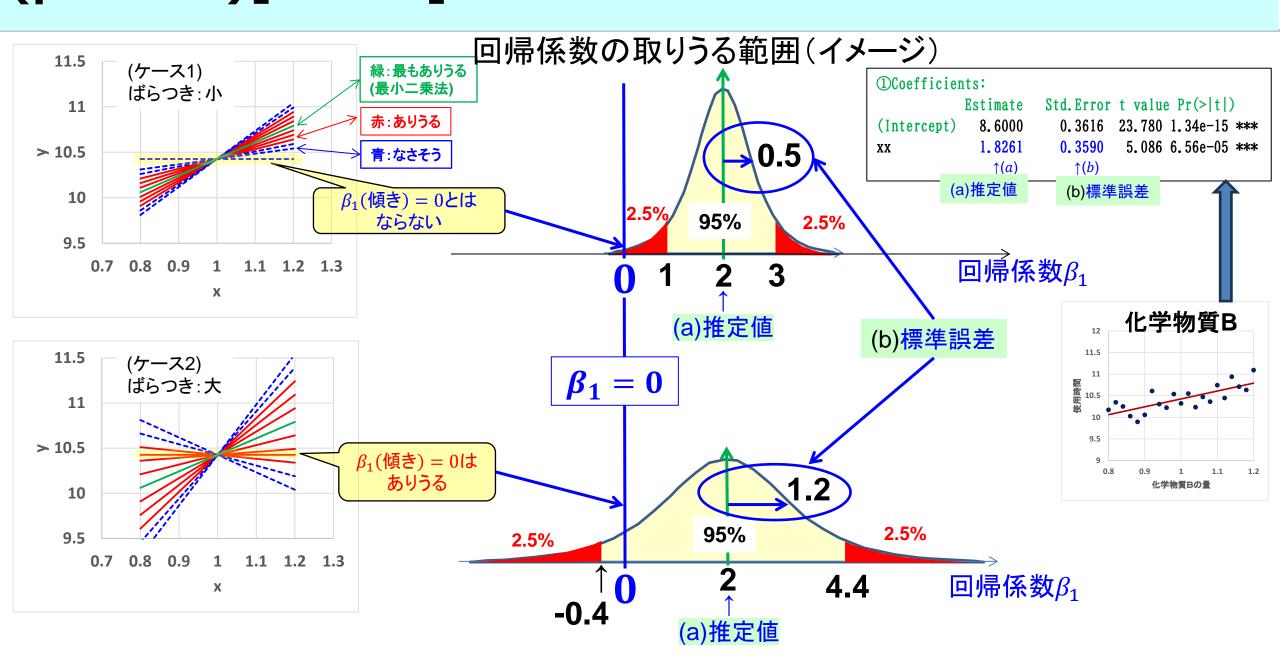
$$\widehat{\beta_0}$$

ない)

(4)分散分析表

要因	(a)平方和 S	(b)自由度 φ	(c)平均平方 V=S/φ	F_0 = V_R/V_e	棄却域 の下限
R(回帰)	1.027	1	1.027	25.9	4.38
e(残差)	0.754 -	19	0.0397	(;	>
計	1.781	20			

(5): H₀を棄却する・しないの判定

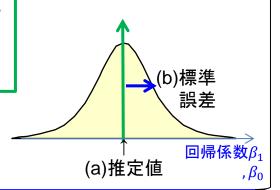

 $F_0 = (25.9)$ は棄却域に (ある)

どっちですか?

- ⇒ H₁は正しいと言える
- $F = F_0$ が棄却域にないので、 H_0 は棄却できない ⇒ H₁は正しいかどうか何も言えない

大小関係(<,>)

(p142.1i)[C10-1]回帰分析の基礎: 回帰係数≠0の検定


(p142.1j)[C10-1]回帰分析の基礎: 回帰係数≠0の<mark>検定</mark>

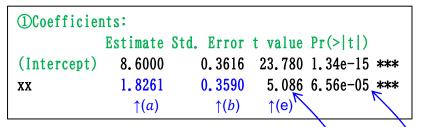
(公式) $t = \frac{(a)$ 推定値 $-\beta_1$ ~自由度 ϕ_e のt分布

単回帰分析での残差の自由度 $\phi_e = n - 2$ $(n: データ組数)(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$

注目する回帰係数:(例) β_1

- (a)推定值(Estimate)=1.8261
- (b)標準誤差(Std. Error)=0.3590
- (c)残差の自由度= 21 2 = 19

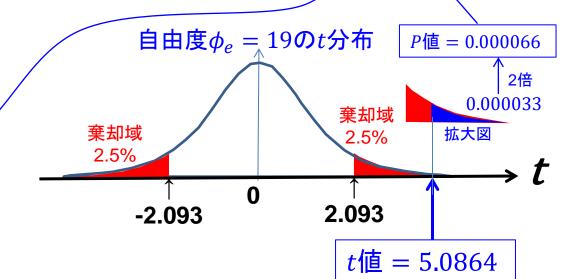
$t = \frac{(a)$ 推定値 $-\frac{\beta_1}{\beta_1}$ $= \frac{1.8261 - \frac{\beta_1}{\beta_1}}{0.3590}$ ~自由度 $\phi_e = 19$ のt分布


検定

- (1) 帰無仮説(H_0): $\beta_1 = 0$ 対立仮説(H_1): $\beta_1 \neq 0$
- (2) 有意水準

両側検定

- (3) 棄却域 $\alpha = 0.05$ |t|≥2.093
- (4) 帰無仮説($\beta_1 = 0$)が正しい時の検定統計量 $\frac{1.8261 - \frac{\beta_1}{\beta_1}}{0.3590} = \frac{1.8261 - 0}{0.3590} = 5.0864$
- (5) 検定統計量(t値)は棄却域にある
- ⇒帰無仮説 (H_0) を棄却する⇒対立仮説 $(H_1)(\beta_1 \neq 0)$ は正しいと言える


統計ソフトRによる出力結果

日本語版(ワンコピペエクセルシートより)

$$y = \widehat{\beta_1}x + \widehat{\beta_0} = 1.8261 x + 8.6$$

(p142.1k)[C10-1]回帰分析の基礎: 回帰係数の<mark>区間推定</mark>

(公式) $t = \frac{(a)$ 推定値 $-\beta_1$ ~自由度 ϕ_e のt分布 単回帰分析での残差の自由度 $\phi_e = n - 2$ $(n: \vec{r}-\beta \underbrace{\text{組数}}_{(x_1,y_1),(x_2,y_2),...,(x_n,y_n)}$

注目する回帰係数: β₁

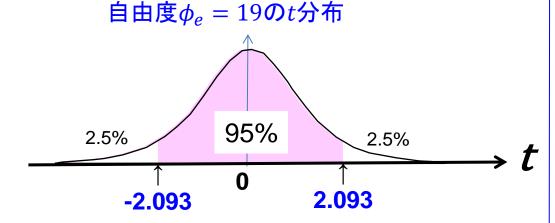
- (a)推定值(Estimate)=1.8261
- (b)標準誤差(Std. Error)=0.3590
- (c)残差の自由度= 21 2 = 19

$$t = \frac{(a)$$
推定値 $-\frac{\beta_1}{(b)}$ 標準誤差 $= \frac{1.8261 - \beta_1}{0.3590}$ ~自由度 $\phi_e = 19$ の t 分布

統計ソフトRによる計算結果

①Coefficie	nts:				
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	8.6000	0.3616	23.780	1.34e-15	***
xx	1.8261	0.3590	5.086	6.56e-05	***
	↑ (a)	↑ (<i>b</i>)	↑(e)		

日本語版(ワンコピペエクセルシートより)


		1 Estimate	1Std. Error	1t value	$\mathfrak{D}Pr(> t)$		
	①Coefficients			検定統計量		区間推定	区間推定
	回帰係数	推定值	標準誤差	(t 値)	P値	(下限)	(上限)
(①Intercept) (切片)		8.6000	0.3616	23.7805	1.33227E-15	7.8430	9.3569
(傾き)	β ₁ (^)=	1.8261	0.3590	5.0864	0.000066	1.0747	2.5775
		↑ (a)	↑ (b)	↑ (e)		↑ (g 2)	↑ (g1)

区間推定の場合

t~自由度 $\phi_e=19$ のt分布 の時、信頼確率95%で $|t|\leq 2.093$

$$|t| = \left| \frac{1.8261 - \beta_1}{0.3590} \right| \le 2.093$$
$$|1.8261 - \beta_1| \le 2.093 \times 0.3590 = 0.7514$$

 $1.0747 \le \beta_1 \le 2.5775$

(p142.1L)[C10-1]回帰分析の基礎: 統計ソフト「R」の結果

統計検定2級の回帰の問題では、統計ソフトウェア(R)による出力結果が示され、 これに基づく解釈に関する問題が頻繁に出されます ⇒読み取れるようにしておいてください (問題例)CBT問題集p147,148,151,171,188

統計ソフトウェア: Rによる回帰分析結果

Residuals:

Min 1Q Median 3Q Max -0.31152 -0.14160 -0.01048 0.13554 0.32984

残差の 最小値・最大値、 四分位数・中央値 (関連)CBT問題集 p152問3[1]④

①Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.6000 0.3616 23.780 1.34e-15 ***

xx 1.8261 0.3590 5.086 6.56e-05 ***

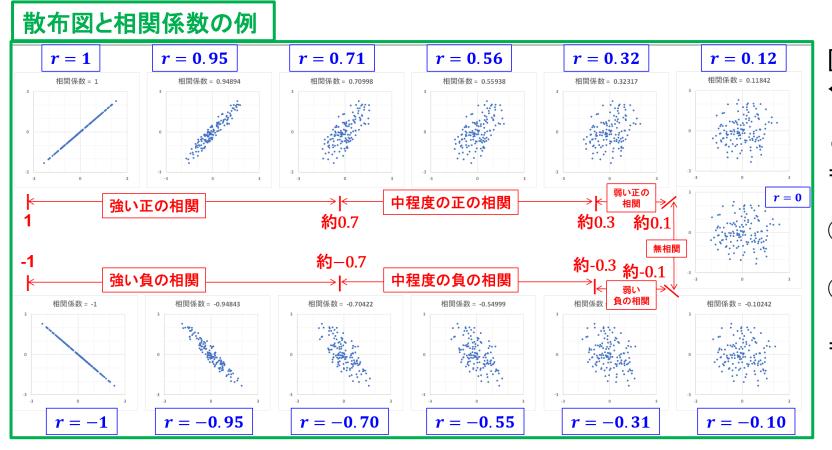
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1

@Residual standard error: 0.1992 on 19 degrees of freedom

3Multiple R-squared: 0.5766, Adjusted R-squared: 0.5543

4F-statistic: 25.87 on 1 and 19 DF, p-value: 6.558e-05

日本語版:

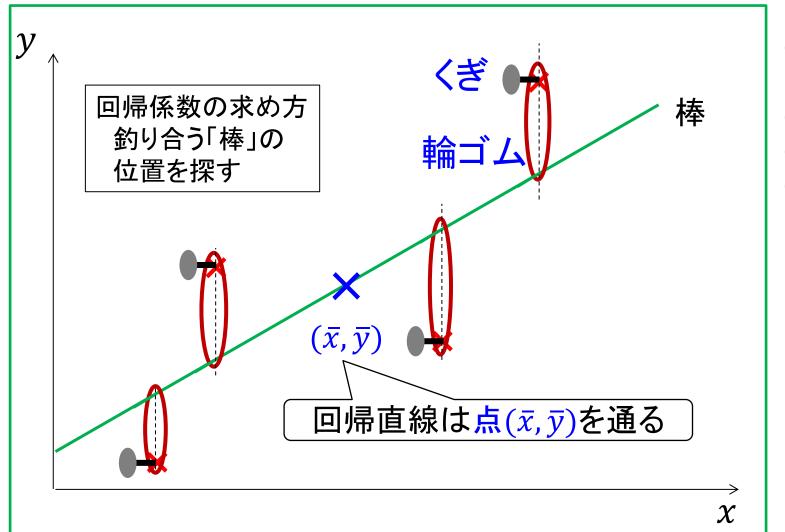

(ワンコピペエクセルシートでの回帰分析結果)

分散分析表				↓検定統計量		↓ (④p-value)	↓(1:効果あ	り、0:無)
要因	平方和	自由度	平均平方	F₀值	棄却域(下限)	P値	判定	効果
R(回帰)	1.027	1	1.027051962	25.8710	4.3807	6.55798E-05	1	有
E(残差)	0.754	19	0.039698956					
ā†	1.781	20						
	残差の標準	誤差(√V _e)=	0.199245969	↑ 4F-s	tatistic 4	回帰の自由度(DF)=	1	
					4	残差の自由度(DF)=	19	
●ステップ4-	: ;	検定・推定を	行う					
検定:		検定統計量	F₀値は棄却域に	あるので		寄与率	<u>≤</u> = 57.7%	
帰	無仮説 H _o :	「回帰に意味	キはない」は	棄却できる		100%		
対	立仮説 H ₁ :	「回帰に意味	ホがある 」	と言える		100%		
						世 80%		
	P值=	0.00007	⇔α:	0.05		与 80% — 60% — 日本 40% — 日本 20% — 10%		残差
(別)	解) P値はα(有	意水準)より	小さいのでH0を	棄却できる		世 60%		
						长 40%	_	回帰
●ステップ5-	:	回帰分析の結	果:) ※ 20%	_	
	- W. (-t- t -t-)		10			ALE.		
			(3Multiple R-squ			0%		
			(3Adjusted R-sq	• ′				
残差の標準			(2 Residual stand			egrees of freedom)=	19	
		_	1Std. Error	_	①Pr(> t)	区即拼合	区期##	
(1	Coefficients		+	検定統計量	D/ /	区間推定	区間推定	
)	回帰係数	点推定值	標準誤差	(t 値)	P値	(下限)	(上限)	
Intercept)(切片)	, , , ,		0.361639519		1.33227E-15	7.8430	9.3569	
(傾き)		1.8261	0.359016316	5.0864	6.55798E-05	1.0747	2.5775	
	$y = \beta_0 (^{\wedge}) +$	β ₁ (^) x			(比較值:0)			

(p142.2) [C10-1]問1[1]. 最小二乗法・傾きの検定

[1]:ABランク [2]:ABランク [3]:Bランク

小問[1]: 散布図⇒相関係数を選ぶ問題



[1]

- ←左の例を参考にすると、
- •p142の散布図: 負の相関がある
- ⇒①②(正の相関)は×
- ③ほど(r=0.094)弱くはない
- ⑤ほどの強い負の相関(r = -0.994)はない
- ⇒④が適当

[1] (答)④

小問[2]: 回帰直線を選ぶ問題

- ①:下に寄り過ぎ。 (左上の点から離れすぎ)
- ③: 左下側に寄り過ぎ。
- ④: 散布図の右下付近の点からずれ過ぎ。
- ⑤: 直線の右上側には3点しかなく、 バランスが悪い。
- \Rightarrow ②がバランス面でも、 (\bar{x},\bar{y}) を通りそうという観点からも 最もいい。

(p142.4) [C10-1]問1[3]. 最小二乗法・傾きの検定

[1]:ABランク [2]:ABランク [3]:Bランク

小問[3]: 回帰式: $y = \beta_1 x + \beta_0$

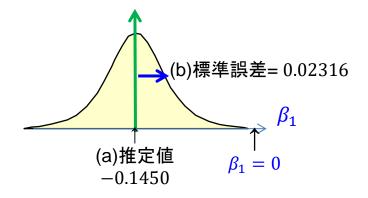
回帰係数: β_1

- (a)推定値(Estimate)= -0.1450
- (b)標準誤差(Std. Error)= 0.02316
- (c)残差の自由度 $\phi_e = n-2=23$

但し、データ組数 n = 2015 - 1991 + 1 = 25

(1) 帰無仮説(H_0): $\beta_1 = 0$

帰無仮説 (H_0) が正しい時の 検定統計量の値は、


*
$$t = \frac{(a)$$
推定值 $-\beta_1}{(b)$ 標準誤差 $= \frac{-0.1450 - \beta_1}{0.02316} = \frac{-0.1450 - 0}{0.02316} = -6.2651$

igstar 検定統計量が従う分布は・・・ 自由度 ϕ_e =23のt分布

(公式) $t = \frac{(a)$ 推定値 $-\beta_1$ ~自由度 ϕ_e のt分布

単回帰分析での残差の自由度: $\phi_e = n-2$

 $(n: データ組数)(x_1,y_1),(x_2,y_2),...,(x_n,y_n)$

仮に、有意水準5%で、

「対立仮説 $\beta_1 \neq 0$ 」として検定すると、 棄却域 $|t| \ge 2.069 \Rightarrow t値は棄却域内にある$ $<math>\Rightarrow H_0$ を棄却 $\Rightarrow H_1$:正しい、となります。

[3]検定統計量(t値)= -6.27 t~自由度23のt分布に従う [3](答)⑤

(p142.4) [C10-1]問1[3]. 最小二乗法・傾きの検定

[1]:ABランク [2]:ABランク [3]:Bランク

小問[3]: 回帰式: $y = \beta_1 x + \beta_0$

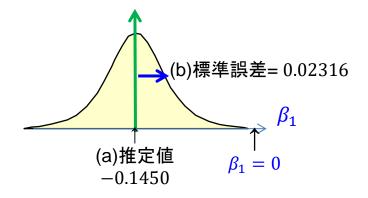
回帰係数: β_1

- (a)推定値(Estimate)= -0.1450
- (b)標準誤差(Std. Error)= 0.02316
- (c)残差の自由度 $\phi_e = n-2=23$

但し、データ組数 n = 2015 - 1991 + 1 = 25

(1) 帰無仮説(H_0): $\beta_1 = 0$

帰無仮説 (H_0) が正しい時の 検定統計量の値は、


*
$$t = \frac{(a)$$
推定值 $-\beta_1}{(b)$ 標準誤差 $= \frac{-0.1450 - \beta_1}{0.02316} = \frac{-0.1450 - 0}{0.02316} = -6.2651$

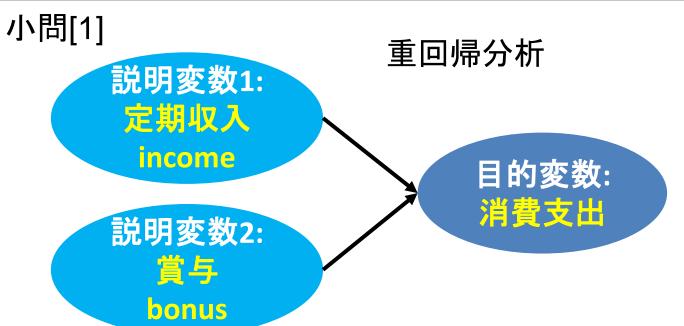
igstar 検定統計量が従う分布は・・・ 自由度 ϕ_e =23のt分布

(公式) $t = \frac{(a)$ 推定値 $-\beta_1$ ~自由度 ϕ_e のt分布

単回帰分析での残差の自由度: $\phi_e = n-2$

 $(n: データ組数)(x_1,y_1),(x_2,y_2),...,(x_n,y_n)$

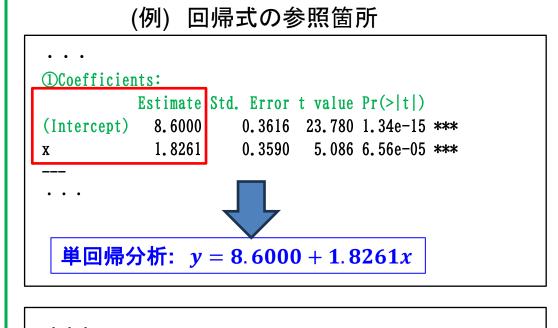
仮に、有意水準5%で、

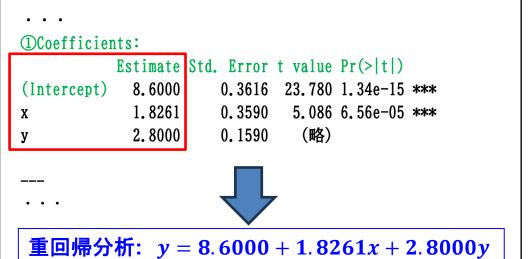

「対立仮説 $\beta_1 \neq 0$ 」として検定すると、 棄却域 $|t| \ge 2.069 \Rightarrow t値は棄却域内にある$ $<math>\Rightarrow H_0$ を棄却 $\Rightarrow H_1$:正しい、となります。

[3]検定統計量(t値)= -6.27 t~自由度23のt分布に従う [3](答)⑤

(p146.1) [C10-1]問2[1]. 重回帰結果の解釈・単回帰予測

[1]:Bランク [2]:Bランク


回帰式:

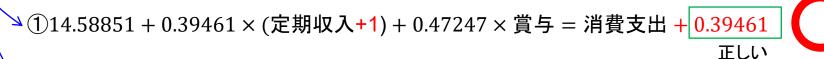

消費支出 = ● + ■ × 定期収入 + ▲ × 賞与 (推定値)

の具体的な式はどうなりますか?

回帰式:

消費支出 = 14.58851 + 0.39461 × 定期収入 + 0.47247 × 賞与 それぞれの単位は「万円」

(p146.2) [C10-1]問2[1]. 重回帰結果の解釈・単回帰予測


[1]:Bランク [2]:Bランク

小問[1]:

回帰式

14.58851 + 0.39461 × 定期収入 + 0.47247 × 賞与 = 消費支出

消費支出,定期収入,賞与のそれぞれの単位は「万円」

②14.58851 + 0.39461 × (定期収入+1) + 0.47247 × (賞与 + 1) = 消費支出 + 0.39461 + 0.47247 約0.39ではない

消費支出× $\frac{0.39}{100}$ ではない

4414.58851 + 0.39461 × 定期収入 × (1 + 0.01) + 0.47247 × 賞与 × (1 + 0.01) = 消費支出 + 0.39461 × 定期収入 × 0.01 + 0.47247 × 賞与 × 0.01

消費支出× $\frac{0.39}{100}$ ではない

⑤定期収入:1万円増えたら消費支出:約0.39万円増える:〇・・・①

定期収入: 1%増えたら消費支出: 約0.39%増える :×・・・③

(p146.3) [C10-1]問2[2]. 重回帰結果の解釈・単回帰予測

[1]:Bランク [2]:Bランク

小問[2]:

$$oxed{I}$$
 $ar{\hat{y}} = ar{y}$ ですか? (但し、 $ar{\hat{y}}$ は、 $x = x_i$ での予測値: $\hat{y_i}$ の平均)

$$\bullet x = x_i$$
での予測値: $\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$

$$\bar{\hat{y}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{y_i} = \frac{1}{n} \sum_{i=1}^{n} (\widehat{\beta_0} + \widehat{\beta_1} x_i) = \widehat{\beta_0} + \widehat{\beta_1} \bar{x} = \bar{y}$$
iには関係ない定数
I: 正しい

II 世帯主収入合計(x)の平均: $\bar{x} = 41.0$ ですか?

●回帰式: $y = \widehat{\beta_1}x + \widehat{\beta_0}$

回帰係数の推定値: $\widehat{\beta_1} = 0.4121$, $\widehat{\beta_0} = 14.3931$

$$\Rightarrow$$
 y = 0.4121*x* + 14.3931

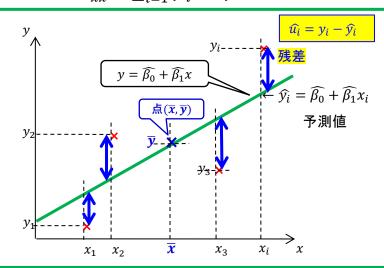
$$\bar{y} = \widehat{\beta_1}\bar{x} + \widehat{\beta_0} \implies \bar{y} = 0.4121\bar{x} + 14.3931$$
$$\bar{\hat{y}} = \bar{y} = 31.3 \text{ なので},$$

 $31.3 = 0.4121\bar{x} + 14.3931 \implies \bar{x} = 41.026$

II: 正しい

公式(回帰直線、回帰係数):

●回帰式: $y = \widehat{\beta_1}x + \widehat{\beta_0}$


回帰直線は 点(x̄, ȳ)を通る

●回帰係数: $\widehat{\beta_1} = \frac{S_{xy}}{S_{xx}}$, $\widehat{\beta_0} = \bar{y} - \widehat{\beta_1}\bar{x}$

 $\bullet x, y$ の平均: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \ \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

●偏差積和: $S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$

●偏差平方和: $S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$

- $\bullet x = x_i$ での予測値: $\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$
- •残差: $\widehat{u}_i = y_i \widehat{y}_i = y_i (\widehat{\beta}_0 + \widehat{\beta}_1 x_i)$
- ●残差の総和: $\sum_{i=1}^n \widehat{u}_i = \sum_{i=1}^n (y_i \widehat{y}_i) = 0$

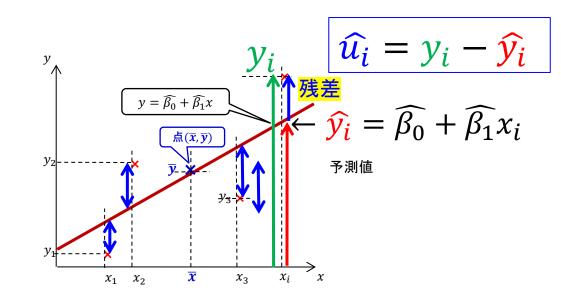
「<mark>残差の総和は0</mark>」←できれば憶えてください

(p146.4) [C10-1]問2[2]. 重回帰結果の解釈・単回帰予測

[1]:Bランク [2]:Bランク

小問[2]:

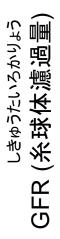
| III | 予測値 $\hat{y_i}$ +残差 $\hat{u_i}$ =元のデー y_i ですか?

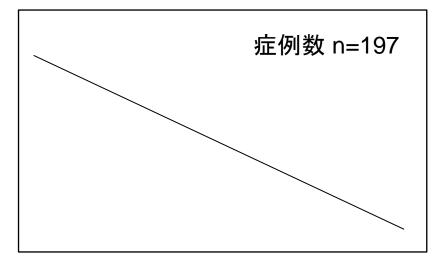

 $\bullet x = x_i$ での予測値: $\hat{y_i}$

●残差: $\hat{u_i} = y_i - \hat{y_i}$

足すと

$$\widehat{y_i} + \widehat{u_i} = \widehat{y_i} + (y_i - \widehat{y_i}) = y_i$$


III: 正しい



前のページ分も含めて

I:正しい II:正しい III:正しい

Cre (クレアチニン)

[1]:BCランク [2]:ABランク [3]:BCランク

小問[1]:

①: 正しいですか?

データ総数:n = 197

全自由度 $\phi_T = n - 1 = 196$

回帰の自由度: (単回帰なので) $oldsymbol{\phi}_R = 1$

残差の自由度: $\phi_e = \phi_T - \phi_R = 196 - 1 = 195$

p151下段の出力結果、下から3行目に「195 degrees of freedom」あり

(解説によると)

回帰モデルの自由度=残差の自由度=195 であり、

決定係数とは関係ない⇒ ①は正しくない

②:正しいですか?

「決定係数」「自由度調整(修正)済決定係数」と「判断が正しいかどうかの確率」とは直接関係ない

⇒ ②は正しくない

決定係数(寄与率) = $\frac{S_R}{S_T}$ = $1 - \frac{S_e}{S_T}$ = r^2

 S_R :回帰による平方和= $\sum_{i=1}^n (\hat{y}_i - \bar{y})^2$

 S_e :残差平方和= $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

 S_T :総平方和= $S_R + S_e = \sum_{i=1}^n (y_i - \bar{y})^2$

r: 相関係数(重回帰の場合、重相関係数)

自由度調整(修正)済決定係数 = $1 - \frac{S_e/\phi_e}{S_T/\phi_T}$

重回帰分析で

「意味なく説明変数増やすと決定係数は1に近づく」 という問題回避のためにつかわれるもの 「決定係数」より小さい値となる

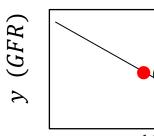
回帰分析の自由度:

データ総数:nの時、

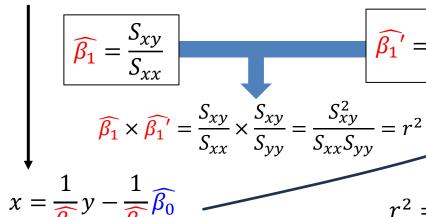
全自由度 $\phi_T = n - 1$

回帰の自由度: (単回帰では) $\phi_R = 1$ (説明変数がp個の重回帰では、 $\phi_R = p$)

残差の自由度: $\phi_e = \phi_T - \phi_R$


(p151.3) [C10-1]問3[1]. 出力結果の解釈・残差・信頼区間

[1]:BCランク [2]:ABランク


[3]:BCランク

小問[1]の③

目的変数

$$y = \widehat{\beta_1} x + \widehat{\beta_0}$$

③は正しくない

 $x = \frac{1}{\widehat{\beta_1}} y - \frac{1}{\widehat{\beta_1}} \widehat{\beta_0}$

目的変数 $(aL_{\bar{y},\bar{x}})$ y (GFR) 説明変数

$$x = \widehat{\beta_1}' y + \widehat{\beta_0}'$$

$$\frac{S_{1}'}{S_{1}'} = \frac{S_{yx}}{S_{yy}} = \frac{S_{xy}}{S_{yy}}$$

$$= r^{2}$$

$$r^2 = 0.4888$$
 ($p151$ 出力結果の下から2行目)なので、

$$\widehat{\beta_{1}}' \neq \frac{1}{\widehat{\beta_{1}}} (= -0.0166) \, \text{Te} \, \hat{\beta}_{0} \cdot \widehat{\beta_{1}}' = \frac{r^{2}}{\widehat{\beta_{1}}} = -\frac{0.4888}{60.263} = -0.0081$$

公式

●回帰係数: $\widehat{\beta_1} = \frac{S_{xy}}{S_{xx}}$ x:説明変数 y:目的変数

ullet 偏差積和: $S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$

●偏差平方和:

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 , $S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2$

●相関係数:
$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

相関係数が $r = \pm 1$ の時のみ、

$$\widehat{\beta_1} imes \widehat{\beta_1'} = 1$$
, $\frac{1}{\widehat{\beta_1}} = \widehat{\beta_1'}$ となる

 $\frac{1}{\widehat{\beta_1}} = \widehat{\beta_1'} = -\frac{1}{60.263}$ ですか? ⇒この問題では、No!

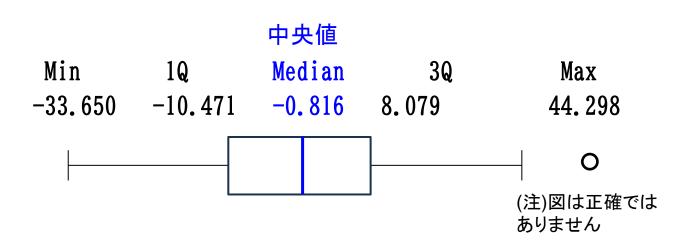
③の解説の 最後と一致

(p151.4) [C10-1]問3[1]. 出力結果の解釈・残差・信頼区間

[1]:BCランク [2]:ABランク [3]:BCランク

小問[1]の④

問題: 残差の平均 > 残差の中央値(-0.816) ⇒正しいですか?


 $\bullet x = x_i$ での予測値: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$

•残差: $\widehat{u}_i = y_i - \widehat{y}_i = y_i - (\widehat{\beta}_0 + \widehat{\beta}_1 x_i)$

●残差の総和: $\sum_{i=1}^{n} \widehat{u}_i = \sum_{i=1}^{n} (y_i - \widehat{y}_i) = 0$

「<mark>残差の総和は0</mark>」←できれば憶えてください

残差の四分位数 (箱ひげ図を思い出してください)

●残差の総和: $\sum_{i=1}^{n} \widehat{u_i} = \sum_{i=1}^{n} (y_i - \widehat{y_i}) = 0$ 「残差の総和は0」なので、

残差の平均 =
$$\frac{1}{n}\sum_{i=1}^{n}\widehat{u_i}=0$$
 > 残差の中央値 残差の中央値 = -0.816

⇒ 残差の平均(0) > 残差の中央値(-0.816)

4は正しい

(p151.5) [C10-1]問3[1]. 出力結果の解釈・残差・信頼区間

[1]:BCランク [2]:ABランク [3]:BCランク

小問[1]の⑤

問3の例ではありません

統計ソフトウェア: Rによる回帰分析結果

4F-statistic: 25.87 on 1 and 19 DF, p-value: 6.558e-05

3Multiple R-squared: 0.5766, Adjusted R-squared: 0.5543

F-statisticは、「分散分析」における検定統計量です。

回帰係数が、有意水準1%で有意かどうかは、 Pr(>|t|)により判断できます。

日本語版:

(ワンコピペエクセルシートでの回帰分析結果)

						1			
	分散分析表				↓検定統計量		↓ (④p-value)	↓(1:効果あ	り、0:無)
	要因	平方和	自由度	平均平方	F₀値	棄却域(下限)	P値	判定	効果
	R(回帰)	1.027	1	1.027051962	25.8710	4.3807	6.55798E-05	1	有
	E(残差)	0.754	19	0.039698956					
	at .	1.781	20						
		残差の標準	誤差(√V _e)=	0.199245969	1 4 F-s	tatistic 4	回帰の自由度(DF)=	1	
						4	残差の自由度(DF)=	19	
	●ステップ4	:	検定・推定を	行う					
	検定:		検定統計量	≧F₀値は棄却域に	あるので		寄与举	≅= 57.7%	
	帰	無仮説 H ₀ :	「回帰に意味	未はない」は	棄却できる				
	対	立仮説 H₁:	「回帰に意味	未がある」	と言える		100%		
							祌 80%		
		P値=	0.00007	⇔α:	0.05		5 80% 60% 60% 40% 40% 20%		T-0-24
	(別	解) P値はα (有	意水準)より	小さいのでH0を	棄却できる		# 60%		残差
							长 40%	-	回帰
	●ステップ5	:	回帰分析の結	果:			∯ 39 20%		
							ole.		
				(3Multiple R-squ			0%		
				(3Adjusted R-sq					
	残差の標準			(②Residual stand			legrees of freedom)=	19	
				1Std. Error	_	①Pr(> t)			
	1	Coefficients			検定統計量		区間推定	区間推定	
		回帰係数	点推定値	標準誤差	(t 値)	P値	(下限)	(上限)	
(1)In	tercept)(切片)	, , , ,	8.6000	0.361639519	23.7805	1.33227E-15	7.8430	9.3569	
	(傾き)	F-1 (/	1.8261	0.359016316	5.0864	6.55798E-05	1.0747	2.5775	
		$y = \beta_0 (^{\wedge}) +$	β ₁ (^) x			(比較値:0)			

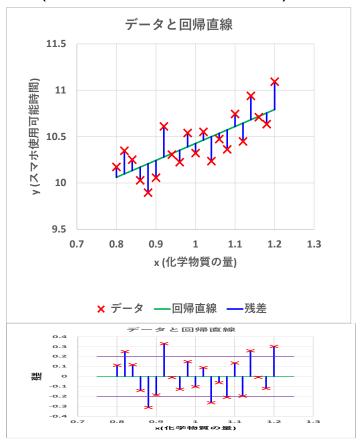
⑤は正しくない

まとめ:1235は正しくない、4は正しい

[1](答)④

(p151.6) [C10-1]問3[2]. 出力結果の解釈・残差・信頼区間

[1]:BCランク [2]:ABランク [2]:BCランク


小問[2]:残差プロット・・・①~④から選ぶ問題です。

右の例の様に、残差プロットは、 元の散布図を反映しているので、 端部の値や、回帰直線から離れた点などに着目し、 よく見比べて判断しましょう

p151 右下の端の5個の点に着目する

- •Cre=1.4より大きい3点: 回帰直線より上にある
- ・Cre=1.4の2点: 回帰直線の少し上と、縦軸10程度分下にある
- ⇒これに合致するのは、①のみ

残差プロットの例 (問3とは違うケースです)

(p151.7) [C10-1]問3[3]. 出力結果の解釈・残差・信頼区間

[1]:BCランク [2]:ABランク [3]:BCランク

小問[3]: Creの回帰係数の区間推定

注目する回帰係数: β₁

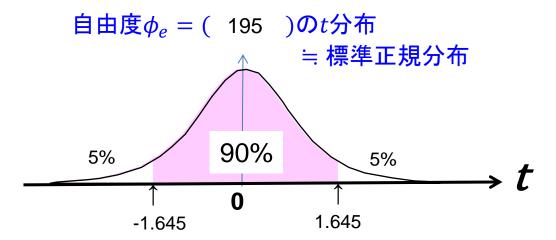
- (a)推定值(Estimate)= -60.263
- (b)標準誤差(Std. Error)= 4.414
- (c)残差の自由度= 195 (症例数 n=197を使用)

$$t = \frac{(a)$$
推定値 $-\frac{\beta_1}{(b)}$ = $\frac{-60.263 - \frac{\beta_1}{4.414}$ ~自由度 $\phi_e = (195)$ の t 分布

$$t$$
~自由度 $\phi_e = ($ 195)の t 分布 の時、信頼確率90%で $|t| \leq ($ 1.645)

$$|t| = \left| \frac{-60.263 - \beta_1}{4.414} \right| \le 1.645$$

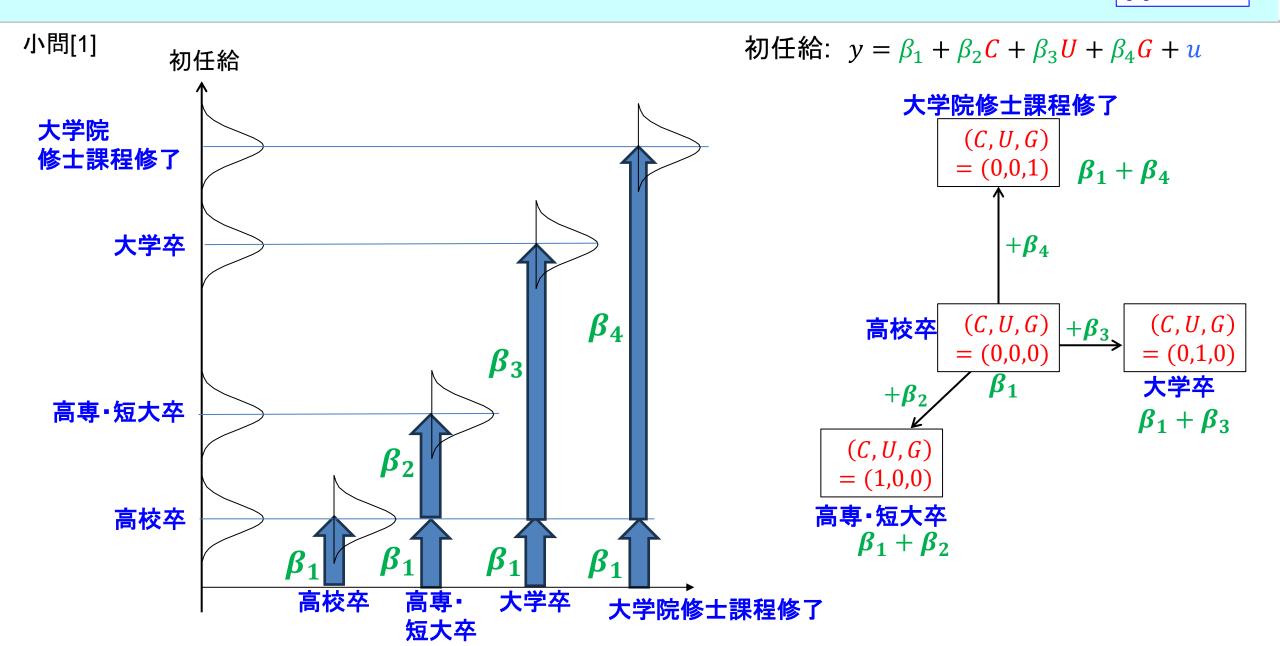
$$|-60.263 - \beta_1| \le 1.645 \times 4.414 = 7.26103$$


$$-67.524 \le \beta_1 \le -53.002$$

[3](答)②

(公式) $t = \frac{(a) 推定値 - \beta_1}{(b) 標準誤差}$ ~自由度 ϕ_e のt分布 単回帰分析での残差の自由度 $\phi_e = n - 2$ $(n: \vec{r} - \beta 4 \pm 3) (x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$

「回帰分析の基礎でご紹介した例」


t~自由度 $\phi_e=19$ のt分布 の時、信頼確率95%で $|t|\leq 2.093$

$$|t| = \left| \frac{1.8261 - \beta_1}{0.3590} \right| \le 2.093$$

 $|1.8261 - \beta_1| \le 2.093 \times 0.3590 = 0.7514$ $1.0747 \le \beta_1 \le 2.5775$

(p156.1) [C10-1]問4. ダミー変数・単回帰係数の性質

[1]:BCランク [2]:BCランク

(p156.2) [C10-1]問4. ダミー変数・単回帰係数の性質

[1]:BCランク [2]:BCランク

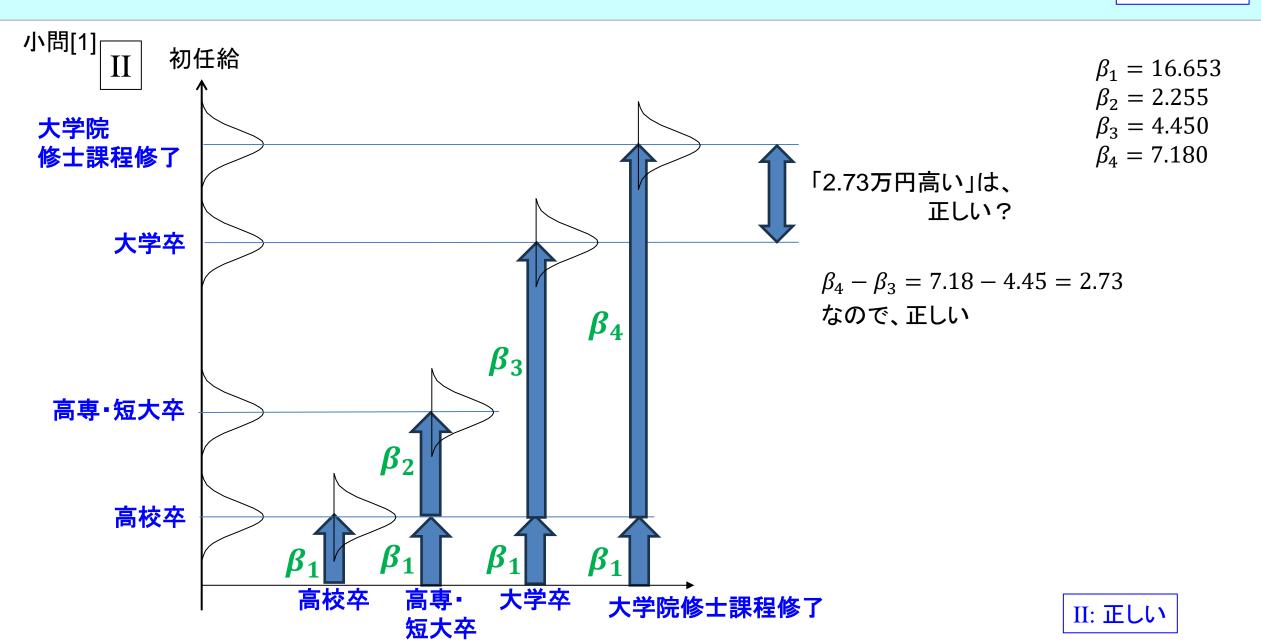
小問[1]

I

・高校卒ダミー変数Hを導入した場合、

となり、 $H + C + U + G = 1 \Rightarrow H = 1 - (C + U + G)$ C,U,Gが決まれば、Hが決まり、独立な変数ではなくなる。 多重共線性の問題が生じてしまう。

I: 正しくない


$$y = \gamma_{1} + \gamma_{2}H + \gamma_{3}C + \gamma_{4}U + \gamma_{5}G + v$$

$$= \gamma_{1} + \gamma_{2}(1 - (C + U + G)) + \gamma_{3}C + \gamma_{4}U + \gamma_{5}G + v$$

$$y = \beta_{1} + \beta_{2}C + \beta_{3}U + \beta_{4}G + u$$

(p156.3) [C10-1]問4. ダミー変数・単回帰係数の性質

[1]:BCランク [2]:BCランク

(p156.4) [C10-1]問4. ダミー変数・単回帰係数の性質

[1]:BCランク [2]:BCランク

小問[1]┌

1. 観測数:n=16 (学歴:4種類×業種:4) 全自由度=16-1=15 回帰の自由度=3 (説明変数は、(C,U,G)の3個なので) 残差の自由度=15-3=12

自由度13ではなく、自由度12のt分布が使われている

I:

III: 正しくない

回帰分析の自由度:

データ総数:nの時、

全自由度 $\phi_T = n - 1$

回帰の自由度: (単回帰では) $\phi_R = 1$

(説明変数がp個の重回帰では、 $\phi_R = p$)

残差の自由度: $\phi_e = \phi_T - \phi_R$

(公式) $t = \frac{(a)$ 推定値 $-\beta_1$ ~自由度 ϕ_e のt分布

正しくない 11: 正しい 正しくない III:

[1](答)②

(p156.5) [C10-1]問4.ダミー変数・単回帰係数の性質

[1]:BCランク [2]:BCランク

小問[2]

小問[1]:重回帰分析 ⇒ 小問[2]:単回帰分析(x: 教育年数)

得られた回帰直線:y = 2.323 + 1.187x

$$2.323 + 1.187x = y$$

 $2.323 + 1.187(x + 1) = y + 1.187$
となるので、正しい

の時、

I: 正しい

決定係数 =0.898 であり、 自由度調整済決定係数 =0.891 ⇒違いは計算の丸め誤差?

今の例では、観測数=n=16 全自由度 $\phi_T = n - 1 = 16 - 1 = 15$ 回帰の自由度 $\phi_R = 1$ 残差の自由度 $\phi_e = 15 - 1 = 14$

自由度調整済決定係数:

決定係数:

$$= 1 - 0.102 \times \left(\frac{15}{14}\right) = 0.891$$

= 1 - 0.102 = 0.898

決定係数=0.898の時、

$$\frac{S_e}{S_T} = 1 - 0.898 = 0.102$$

II: 正しくない

●決定係数(寄与率):

$$R^2 = 1 - \frac{S_e}{S_T}$$

●自由度調整済決定係数:

$$R^{*2} = 1 - \frac{\frac{S_e}{\phi_e}}{\frac{S_T}{\phi_T}} = 1 - \frac{S_e}{S_T} \frac{\phi_T}{\phi_e}$$

 S_T : 全平方和

 S_e :残差平方和

 ϕ_T : 全自由度

 ϕ_e : 残差の自由度

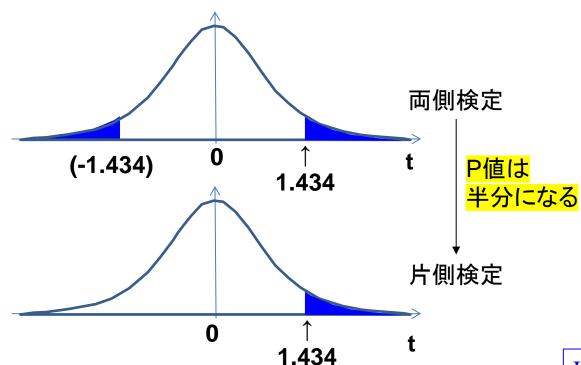
(p156.6) [C10-1]問4.ダミー変数・単回帰係数の性質

[1]:BCランク [2]:BCランク

小問[2]

III

回帰直線: $y = \alpha + \beta x$


両側検定:

帰無仮説 H_0 : $\alpha = 0$ 対立仮説 H_1 : $\alpha ≠ 0$

片側検定: H_0 : $\alpha = 0$

 H_1 : $\alpha > 0$

P値は同じ?

I: 正しい

II: 正しくない

III: 正しくない

III: 正しくない